Week 7
Taylor Series

Definition.

Given a function f which is infinitely differentiable at a (i.e. f(k)(a) is defined for
k=0,1,2,3,...). The Taylor series of f (centered) at a is the power series:
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In general, for any power series of the form S(z) = Z ax(z — a)¥, the value of S at any
k=
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given c € R is by definition the limit:

Note that this limit does not necessarily exist. If it does exist, we say that the power
series S converges at x = ¢, otherwise we say that it diverges at z = c.



Example.

The Taylor series at a = 0 for various functions f are as follows:
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Example.

The Taylor T'(z) series of f(xz) =e” at a =0 converges everywhere

each z € R, we do have:

1 T
T(w)zzﬁxk:e.

o0
k=

0

. Moreover, for

Similarly, for all z € R, we have:
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The Taylor series of f(z) =In(1+z) ata=0is:




which converges only for z € (—1,1].
For such z we do have:
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There are functions whose Taylor series converge everywhere, but not to the
functions themselves.

Shortcuts for Computing Taylor Series

Theorem.

Let S(z) = » _ ax(z — a)* be a power series which converges on an open interval of
k=0

the form (a — r,a + ), » > 0, then the function S(z) is differentiable on (a — r,a + r)

, with §'(z) = Z kay(z —a)* ' forallz € (a — r,a +7).
k=0

Applying this theorem repeatedly, it may be shown that S(z) is in fact infinitely
differentiable on (a — r,a + r), and its Taylor series at z = a is itself. That is:
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Put differently:




Corollary.

Let f be a function. If there is a sequence {a;};° , such that:

for all z in some open interval centered at a, then Y- ai(z —a)* is the Taylor

(k)
series of f at x = a, with a; = ! k'(a) .
Corollary.
If:
Z ap(z —a)k = Z br(z — a)*
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for all z in some open interval centered at a, then a;, = b, for all k.

Exercise.

Find the Taylor series of f at the given point a.
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