
Definition.

Given a function  which is infinitely differentiable at  (i.e.  is defined for 
). The Taylor series of  (centered) at  is the power series:

>

In general, for any power series of the form , the value of  at any

given  is by definition the limit:

Note that this limit does not necessarily exist. If it does exist, we say that the power
series  converges at , otherwise we say that it diverges at .
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Taylor Series
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Example.

The Taylor series at  for various functions  are as follows:

Example.

The Taylor  series of  at  converges everywhere. Moreover, for
each , we do have:

Similarly, for all , we have:

However,
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The Taylor series of  at  is:
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which converges only for .
For such  we do have:

>

In particular, we have:

Remark.

>

There are functions whose Taylor series converge everywhere, but not to the
functions themselves.

Shortcuts for Computing Taylor Series
Theorem.

Let  be a power series which converges on an open interval of

the form , , then the function  is differentiable on 

, with  for all .

Applying this theorem repeatedly, it may be shown that  is in fact infinitely
differentiable on , and its Taylor series at  is itself. That is:
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Corollary.

Let  be a function. If there is a sequence  such that:

for all  in some open interval centered at , then  is the Taylor

series of  at , with .

Corollary.

If:

for all  in some open interval centered at , then  for all .

Exercise.

Find the Taylor series of  at the given point .
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