Deng Yongzhe Suppose $f(x)$ is twice differentiable in $[0, 1]$ and $|f''(x)| \leq M$, and $f(x)$ get its maxima in $(0, 1)$. Try to show: $|f'(0)| + |f'(1)| \leq M$.

Lam Chi Yeung Let $f : \mathbb{R} \to \mathbb{R}$ be a function which satisfies

$$|f(x) - f(y)| \leq (x - y)^2$$

for all $x, y \in \mathbb{R}$. Show that f is a constant.

Ng Tsz Ching Integrate $\int_{-\infty}^{\infty} e^{-x^2} dx$.

Chen Yu What is $1 - 1 + 1 - 1 + 1 - 1 + \cdots = ?$

Chen Tengrove the following properties of traces.

1. $\text{tr}(A + B) = \text{tr}(A) + \text{tr}(B)$;
2. $\text{tr}(kA) = k \text{tr}(A)$;
3. $\text{tr}(A^T) = \text{tr}(A)$;
4. $\text{tr}(AB) = \text{tr}(BA)$.

Liu Beibei Function f satisfies functional equation $f(x + y) = f(x) + f(y)$ ($\forall x, y \in \mathbb{R}$), and f is continuous at $x = 0$, then there is only one solution $f(x) = ax$ satisfying the equation (a is a constant).

Li Hangfan Here are two problems:

1. Integrate $\int \frac{\ln x}{x^5} dx$.
2. Integrate $\int \frac{2 + \sqrt{x}}{3 - \sqrt{x}} dx$.

Xu Ang Show that: $\lim_{n \to \infty} \sqrt[n]{n} = 1$
Choi Ki Kit Answer the following questions:

1. Show that $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ is not analytic at 0.

2. Evaluate $\int \int_{\mathbb{R}^2} e^{-(x^2+y^2)} dx dy$.

3. Let A be a $n \times n$ self-adjoint matrix. Suppose $R(x) = \frac{<Ax,x>}{||x||^2}$, then $\max_{x \neq 0} R(x)$ is the largest eigenvalue of A.

Chan Ho Yuan Answer the following questions:

1. Let

\[
A = \begin{bmatrix}
1 & -1 & -2 & 0 \\
-1 & 1 & 3 & 1 \\
-2 & 2 & 7 & 3 \\
2 & -2 & -6 & -2
\end{bmatrix}
\]

(a) Find $u_1, u_2 \in \mathbb{R}^4$ such that $\text{span}\{u_1, u_2\} = \text{N}(A)$, where $\text{N}(A)$ is the null space of A.

(b) Find a $u_3 \in \mathbb{R}^4$ such that $Au_3 = b$, where $b = (3, -4, -9, 8)$.

(c) Find a $u_4 \in \mathbb{R}^4$ such that $Au_4 = b$, where $b = (-2, 3, 7, -6)$.

(d) Show that every $x \in \mathbb{R}^4$ can be written uniquely as a linear combination of u_1, u_2, u_3, u_4.

2. (A First Course in Linear Algebra by Robert A. Beezer, P.56, T40)

Suppose $Ax = b$ is a consistent system of linear equations in which two columns of A are equal. Prove that the system has infinitely many solutions.

Zuo Cheng Show that Let M be a subspace of the Hilbert space H. Let $v \in H$

M and define $\delta := \inf \{\|v - w\| : w \in M\}$. (Note that $\delta > 0$ since M is closed in H) Then there exists $w_0 \in M$ such that:

(i) $\|v - w_0\| = \delta$, i.e., there exists a closest point $w_0 \in Mtov$, and

(ii) $v - w_0 \in M^\perp$.

Cheng Siu Hong This is to show \(\int_0^\infty \frac{\sin(x)}{x} \, dx = \frac{\pi}{2} \) by computing a double integral (using Fubini’s Theorem) and elementary calculus techniques such as integration by parts.

Define the improper integral of an improperly integrable function \(f(x) \) by

\[
\int_a^\infty f(x) \, dx = \lim_{b \to \infty} \int_a^b f(x) \, dx
\]

(a) Show that \(\int_0^\infty \exp(-xy) \sin(x) \, dy = \frac{\sin(x)}{x} \).

(b) Evaluate \(\int_0^a \exp(-xy) \sin(x) \, dy \).

(c) By using Fubini’s theorem and the result of (a) and (b), show that \(\int_0^\infty \frac{\sin(x)}{x} \, dx = \frac{\pi}{2} \).

Wang Chuiji Show that \(A,B \) are commutative matrices, and they both can be diagonalized, then they can be diagonalized simultaneously.

Choi Chi Po For \(m = 1, 2, 3, \ldots \), \(n = 1, 2, 3, \ldots \), let

\[s_{m,n} = \frac{m}{m + n} \]

Compute

\[\lim_{n \to \infty} \lim_{m \to \infty} s_{m,n} \]

and

\[\lim_{m \to \infty} \lim_{n \to \infty} s_{m,n} \]

Do they have the same value? Explain your answer.

Wen Jia Find the first five derivatives of the following functions:

1. \(f(x) = \frac{1}{2 - x} \)
2. \(f(x) = \ln(3 + x) \)

Yin Guojian Answer the following questions:

1. Using L’Hospital’s Rule to evaluate \(\lim_{x \to 0} \frac{(1 - \cos x) \sin 4x}{x^3 \cos x} \).
2. Find \(\int e^{2x} \sin x \, dx \).
Luo Tianwen Compute the following limit

$$\lim_{{x \to 0^+}} x \ln x$$

Liu Xin Prove that: in an n-dimensional real Euclidean space, the operator $\Delta = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$ does not change under rotation.

Du Yangge Find the following limit by Riemann integral:

$$\lim_{{n \to \infty}} \sum_{k=0}^{n-1} \frac{k}{n^2} \sin\left(\frac{k}{n}\right).$$

Kong Shilei Let a, b, c, d be some real numbers such that the limit

$$\lim_{{x \to 0}} \frac{\sin^2 2x + a + bx + cx^2 + dx^3}{x^4}$$

exists. Find the values of a, b, c, d and the limit.

Mei Yu Find $\lim_{{x \to 0}} x^\sin x$.

Lee Man Chun Show that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

(Hint: consider $\int_{0}^{1} \int_{0}^{1} \frac{1}{1-xy} dxdy$).

Min Jie Let A be an $n \times n$ matrix and $A \ast A = A \ast A^t$. Show that A is symmetric. (Hint: use induction on the dimension of A).

Tao Ran Show that if $x \in \mathbb{R}$, $y \in \mathbb{R}$, and $x < y$, then there exists a rational number $p \in \mathbb{Q}$ such that $x < p < y$.

Yuan Zhiri As we can see, for continuous functions, the existence of

$$\int_{0}^{\infty} f(x)dx \text{ and } \lim_{{x \to \infty}} f \text{ are somehow related. If } \lim_{{x \to \infty}} f \text{ does not equal to zero, then } \int_{0}^{\infty} f(x)dx \text{ makes no sense. So, will } \lim_{{x \to \infty}} f \text{ equal to zero if } \int_{0}^{\infty} f(x)dx < \infty?$$
Yuan Yuan Considering \(s_n = \sum_{k=1}^{n} \frac{1}{k!} \), it is easy to prove \(s_n < 2 \). So we can define
\[
\lim_{n \to \infty} s_n = e. \tag{1}
\]
Prove
\[
\lim_{n \to \infty} (1 + \frac{1}{n})^n = e. \tag{2}
\]

Zhang Pengfei Show that if \(A, B \) are two \(n \times n \) matrices, then
\[
\det \begin{bmatrix} A & B \\ B & A \end{bmatrix} = \det(A + B) \cdot \det(A - B).
\]

Xiao Yao Calculate the integral of \(\int_{-\infty}^{\infty} e^{-x^2} dx \)

Chen Guanheng A certain ecological territory contains \(S \) thousands squirrels and \(R \) thousands rabbits. Currently, there are 4000 of each species, and the grow rates of the population with respect to time satisfies the following equations:
\[
\begin{align*}
\frac{dR}{dt} &= 63R - 3RS, \\
\frac{dS}{dt} &= 26S - RS.
\end{align*}
\]
Find the relationship of \(R \) and \(S \).

Liu Haixia Function \(f \) satisfies functional equation \(f(x + y) = f(x) + f(y) \) (\(\forall x, y \in \mathbb{R} \)), and \(f \) is continuous at \(x = 0 \), then there is only one solution \(f(x) = ax \) satisfying the equation (\(a \) is a constant).
Liu Keji

1. Determine the domain of the given function

\[f(t) = \frac{t + 2}{\sqrt{9 - t^2}} \]

2. Find the composite function \(f(g(x)) \).

(1) \(f(u) = 3u^2 + 2u - 6, \quad g(x) = x + 2 \),
(2) \(f(u) = (u - 1)^3 + 2u^2, \quad g(x) = x + 1 \).

3. Find functions \(h(x) \) and \(g(u) \) such that \(f(x) = g(h(x)) \).

(1) \(f(x) = (x - 1)^2 + 2(x - 1) + 3 \),
(2) \(f(x) = \frac{1}{x^2 + 1} \).

4. Write an equation for the line with the given properties.

(1) Through (5,-2) with slope \(-\frac{1}{2}\).
(2) Through (1,5) and (3,5).
(3) Through (3,5) and perpendicular to the line \(x + y = 4 \).

5. Find the indicated limit if it exists.

(1) \(\lim_{x \to 5} \frac{x^2 - 3x - 10}{x - 5} \).
(2) \(\lim_{x \to -2} \frac{x^2 - x - 6}{x^2 + 3x + 2} \).
(3) \(\lim_{x \to +\infty} \frac{x^2 - 2x + 3}{2x^2 + 5x + 1} \).
Ruan Pengfei Prove

\[
\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{\frac{1}{n}x} = 1.
\]

Fangqiong JIAN Compute \(\int \sec x \, dx \).

Dai Lipeng Compute \(\lim_{x \to 0} \frac{x^2y^2}{x^3+y^3} \) as \(x \to 0, y \to 0 \).

Zhao Rui A cyclic curve \(L \) is given by polar coordinate \(r = 1 + \cos \theta, 0 \leq \theta \leq \frac{\pi}{2} \) and segment \([0, 2]\) on \(x \) axis and segment \([0, 1]\) on \(y \) axis. Find the volume of the solid by rotating \(L \) around the \(x \) axis.