

Department of Mathematics The Chinese University of Hong Kong

數學系 香港中文大學

Phone: (852) 3943 7988 / 3943 7989 • Fax: (852) 2603 5154 • Email: dept@math.cuhk.edu.hk Rm. 220, Lady Shaw Building, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

Colloquium

PGL_2 -crystalline local systems on the projective line minus 4 points and torsion points on the associated elliptic curve

Professor Kang Zuo

Institut für Mathematik Johannes Gutenberg-Universität

Abstract: In my talk I shall report my recent joint work with R.R. Sun and J.B. Yang. Given an odd prime p we take t to be a number in an unramified extension of the p-adic number ring Z_p such that $t \pmod{p}$ is not equal to 0 and 1, and C_t to be the elliptic curve defined by the affine equation $y^2 = x (x - 1)(x - t)$.

For $q = p^n$ we speculate the set of points in $C_t(F_q)$ whose order coprimes to p corresponds to the set of $PGL_2(\overline{F_q})$ -crystalline local systems on $P^1 - \{0, 1, \infty\}$ over some unramified extension of the p-adic number field Q_p via periodic Higgs bundles and the p-adic Simpson correspondence recently established by Lan-Sheng-Zuo for GL-case and Sun-Yang-Zuo for PGL-case.

In the arithmetic setting, given an algebraic number field K we introduce the notion of arithmetic local systems and arithmetic periodic Higgs bundles and speculate the set of torsion points in $C_t(K)$ corresponds to the set of PGL_2 -arithmetic local systems on $P^1 - \{0, 1, \infty\}$ over K.

It looks very mysterious. M. Kontsevich has already observed that the K3 surface as the Kummer surface of the elliptic curve C_t also appears in the construction of the Hecke operators which define the l-adic local systems on $P^1 - \{0, 1, \infty\}$ over F_q via the GL_2 Langlands correspondence due to V. Drinfeld.

Date: Friday, 22 December 2017 Time: 10:30 a.m. – 11:30 a.m.

Venue: Rm 222, Lady Shaw Building,

The Chinese University of Hong Kong, Shatin