In a research trip this summer, I visited Cornell University and Waterloo University. There I was pleasantly surprised to see many former and current students of our Department. In Cornell, three alumni are studying the Ph.D. In Waterloo, there are ten people altogether — exchange students, postgraduates and postdoctorates, and last but not least, a faculty member, Professor Ng Che-Tat, who was my classmate in the CUHK decades ago.

Is it mere coincidence that I encountered so many familiar faces in Cornell and Waterloo? Certainly not, for this, let us trace back to the programme known as Summer Undergraduate Research Experience (SURE) which started eight years ago. Soon after initiating this programme, we sent our students to Cornell to join their REU (Research Undergraduate Experience), a national summer programme of mathematics in the US. It only took a short time for our programme to gain momentum. As more students became interested, we made arrangements with more institutions to cater for them, including Waterloo which also hosts a Canadian version of the REU. Nowadays, we place about fifteen such students every summer, and it is encouraging that almost all of them continue to graduate studies. They further their studies in many of the prestigious universities, and in fact some of them have already completed the Ph.D. and become faculties. I should add that for many years the funding for SURE comes from Mr. Li Sze-Lim, one of our alumni, to whose generosity we owe our heartfelt thanks.

In the previous issues, we have reported many success stories of our graduates in academia. Just as Mr. Li has become an outstanding entrepreneur subsequently, some of our graduates are involving enthusiastically in sectors apparently not related to mathematics. In this issue, we are grateful to receive two contributions from two such alumni, one a concert pianist, the other an NGO worker in Cameroon, both reflecting on their mindscapes in one or another way.

Both the rendezvous with the SURE alumni and the stories of the two alumni mentioned encouraged me to look ahead at the coming first batch of 3-3-4 entrants. Starting next summer, many future graduates will enter the mathematics programme via more diversified channels. It is high time our department re-think our courses in the hope that most future students will receive the best possible education both in breadth and profundity.

Eight years ago, we launched the SURE — it bore fruit in many splendid ways. Let us hope with enthusiasm that eight years from 2012, the same will be said of our new curriculum.

Lau Ka Sing
Prof. Demetrios Christodoulou is a physicist turned mathematician. He was a Greek child prodigy, who did his Ph.D. under one of the most well-known physicists in the 20th century, J. A. Wheeler. Prof. Christodoulou works in the theory of general relativity and has made significant contribution to that field. At present, Prof. Christodoulou is teaching at the renowned ETH in Zürich, Switzerland, the university in which A. Einstein once studied.

Prof. Richard S Hamilton has obtained his Ph.D. under R. Gunning in Princeton. Since the 80s (or even earlier), Prof. Hamilton has been conceiving of proving the Poincare Conjecture through the heat equation method. Over the past decades, he has incessantly worked on this problem. He has laid down most of the foundational works for Perelman's proof of the Geometrization Conjecture.

Prof. Wei Juncheng, Professor of Mathematics, was awarded the 2010 Morningside Silver Medal of Mathematics for his contributions in the study of semi-linear elliptic equations. [Photo 2] Prof. Wei also received from the Ministry of Education a first-class award for the research project ‘Concentration Phenomena in Nonlinear Elliptic Equations and Systems’ in the 2010 Higher Education Outstanding Scientific Research Output Awards (Science and Technology) in the category of natural sciences. Prof. Joseph J. Y. Sung, Vice-Chancellor of the CUHK, received the same award for another significant research project. [Photo 1: Prof. Wei (left) and Prof. Sung (middle)]

Prof. Leung Nai-chung Conan of our Department and the Institute of Mathematical Sciences was awarded the 2010 Chern Prize for his significant work in the study of mirror symmetry and quantum cohomology. [Photo 3]
大學於2012年開始，有志修讀數學的中學生，可考慮以下四個課程。其中兩個為數學系開辦，另外兩個則分別與工程學院、教育學院合辦。這些課程各有特色，同學可以選擇適合自己的課程，展開豐富的大學生活。然而，無論選擇哪一個課程，同學都必須具備良好的數學根底。

數學精研

是為希望學習較深入了解數學理論或有志從事數學研究的同學而設，特別適合計劃升學深造的同學。進讀此課程之同學將較早修畢基礎科目，而預留充裕時間修讀較多高等科目，為將來從事學術研究打好基礎。同學畢業時擁有廣闊而深入的數學知識，能勝任對數學知識及能力要求較強的工作。

理學院大類招生

是為希望涉獵較廣泛知識的同學而設。課程具高度之彈性，同學於第一年修畢涵蓋多門科學知識的基礎課程後，可於第二年選擇主修數學。此後，同學可按興趣及專長，修讀數學各科，既可機會深入鑽研數學理論，又可接觸數學的多元應用。由於本課程不設主修學科人數上限，所以同學在選擇上具更大的自由。此課程設有機制讓同學選讀跨學科知識，使同學掌握更多不同學科的關係及相互應用。

數學與信息工程學

是與信息工程學系合辦的課程，為對數學及信息工程學兩方面均有興趣的同學而設，內容包括兩個學科的學問，互相補充。畢業後同學可選擇從事數學或信息工程有關的工作，例如財經及銀行業務上作數量分析、資訊處理及網絡系統、保安防護及系統管理。同學亦可繼續升學深造，從事學術研究工作。進讀此課程有以下兩個途徑。一：報讀並完成第一年「數學精研」課程後，於第二年轉修「數學與信息工程學」。二：報讀並完成第一年「工程學院大類招生」課程後，於第二年選擇主修「數學與信息工程學」。

數學與數學教育

是中文大學教育學院開辦的課程，而數學系參與提供數學的訓練。課程為有志投身教育而對數學有興趣的同學而設。此為五年制課程，並涵蓋了等同教育文憑的資格。課程有嚴格的數學要求，同學將與數學主修生一同修讀數學科目，學習純正的數學知識。有興趣的同學，須在報讀志願中直接選擇此課程。

給中學生的一些提示

大學裏不少課程，都需要或多或少的數學基礎，同學必須做好準備。一般來說，若打算主修物理、工程、計量金融、精算、風險管理、財務或經濟等課程，中學文憑比較宜修讀數學Module 2，對入讀及修習該等科目均有裨益。至於其他的商科或社會科學、醫學或生物科學，甚至部份文科，數學訓練都有正面影響，數學Module 1可說是少不了的。

收生詳情，請參閱以下網址內容：
The Department is glad to see yet two young faculties joining our taskforce this summer, bringing freshness and new perspectives. The following interviews attempt to open the window to their thoughts.

Prof. LEE Woon Yin read for his Ph.D in the University of Toronto and did post-doctoral studies in the University of California, Berkeley. He studied optimal transportation and control theory.

Could you share your fields of research with us?

‘My research focuses on the theory of optimal transportation. It starts from Monge's problem of moving one mass from one place to another in the most efficient way. In the last two decades, it became known that this simple problem is connected to different areas of mathematics, such as geometric inequalities, Riemannian geometry, Ricci flow and nonlinear diffusion equations.

Another research area that I am working on is called subriemannian geometry and optimal control. Subriemannian manifolds are model spaces of objects which roll and slide without slipping. Simple examples include snooker ball rolling and ice skating. More complex phenomenon like the behaviour of a charged particle in a magnetic field can also be described using subriemannian geometry.’

What difficulties do you encounter in studying optimal transportation?

‘I try to understand subriemannian geometry from the perspective of optimal transportation. Compared with classical Riemannian spaces, subriemannian spaces are usually more singular and have more complicated structures. Very often, a basic, simple result in Riemannian geometry may have a more sophisticated analogue in the subriemannian situation.’
Prof. CHAN Kwok Wai read for his Ph. D. in the CUHK and did post-doctoral studies in Harvard University, the Institut des Hautes Études Scientifique (IHÉS) and Tokyo University respectively. He works on string theory and mirror symmetry.

Could you share your fields of research with us?

‘I am doing research on mirror symmetry. It is related to string theory in physics. As we know, there are conflicts between quantum mechanics and general relativity. String theory aims to eliminate the conflicts between these two fundamental physical theories. However, string theory is still being developed in a theoretical way; there are currently no physical experiments to test this theory. So, string theory is still conjectural: it assumes the physical world to be not four-dimensional, but ten. This is an interesting feature.’

Oh, apart from the four dimensions we know, what are the other six dimensions?

‘The other six dimensions should be a Calabi-Yau manifold. This leads to the discovery of mirror symmetry. If we take two topologically different Calabi-Yau manifolds, sometimes they turn out to produce the same physical world. This phenomenon implies that there are many intricate geometric relations between the two Calabi-Yau manifolds.’

What difficulties do you encounter in studying string theory and mirror symmetry?

‘The main difficulty lies in the fact that string theory is a physical theory. Physicists are asking us to develop a new kind of geometry that can suit their needs. We have to unlock the mathematics from the physics, in order to figure out the secret geometry behind string theory and to lay out its mathematical foundation. Although physicists and mathematicians are always interacting closely with each other, we are in fact using two rather different languages. It is not easy for us to communicate with each other. For example, it takes me much more time to read a physics paper than a math one. However, mirror symmetry is very interesting because it is very mysterious from the mathematical viewpoint. It suggests a way to understand physics which is ‘revolutionary’—through both algebra and geometry.’
伍盛中先生

以一級榮譽學位（2000）畢業於中大數學系，隨後考進俄羅斯莫斯科國立柴可夫斯基音樂學院，主修鋼琴演奏，再攻讀鋼琴演奏及室樂雙博士學位（俄羅斯音樂演奏之最高學歷等級）課程。伍先生乃該學院第一位同時修讀兩個研究院課程的外國學生。伍先生經常往來歐亞各地音樂廳、博物館及教堂參與各類型演奏。演奏曲目包括西方和俄羅斯作曲家不同時期與風格的作品。伍先生尤其醉心於A. Scriabin 和K. Szymanowski 的作品。他現於香港中文大學、香港教育學院及澳門理工學院藝術高等學校任講師。現在伍先生和我們分享學習數學和音樂的體會。

起初我愛數學，是因為她是所有科學的形而上學，有放諸四海皆準的普遍有效性。而音樂呢，除了覺得她也是一種適用於每一個思想主體的普遍有效的語言之外，我覺得她還是是一個非物質的世界，在那裡思想感情都以美的姿態呈現出來。數學是眾科學中的皇后，對我來說，音樂也是眾藝術中的皇后。之後我了解到音樂和純數學一樣，其形式都是抽象的，本質都是形而上學的。

數學是純理性邏輯具創造性的伸延。音樂從本質來說，是最接近思想和意志活動的藝術：她是感性思維的最直接顯現。一首音樂作品跟數學理論系統一樣，也有自己的定義、公理和遊戲規則。在眾多藝術之中，音樂乃「萬物皆數」得以最直接的呈現。音樂可說是流動的建築。從作曲技巧、結構來說，她很大程度上是一些數學遊戲，甚至可說音樂是藝術裡的應用數學。數學是大自然，宇宙——物理世界的結構藍圖的語言。同樣，音樂是靈性世界的建構原理和遊戲規則。

音樂給人一個錯覺：音樂天份只是極少數人所擁有的恩賜。的確，眾多學習音樂的人當中，只有少數人能突破學習過程中的難關，成為音樂家。但我深信：擁有音樂天份的人一定比一般人想像的多。眾所周知，古典音樂可以刺激數學思維，而我則認為數學邏輯思維能力強的人，也必

定擁有不少的音樂天份，反之亦然。

其實數學家比所有藝術家更需要創作力和靈感。當然，音樂家需要天份和靈感，但我覺得他們同樣需要的是品味、修養、意志力和感染力。柴科夫斯基說過：靈感只會拜訪努力不懈的藝術工作者。從這句話可以看出，似乎靈感對藝術來說還不及默默耕耘來得重要！但是天才數學家們的神來之筆，又豈是默默耕耘便可學得到？

誠然，理性也有其極限。康德的巨著《純粹理性批判》便是在探討這個無奈的主題：有些命題是理性邏輯無論如何也不能加以證明或者推翻。而哥德爾定理便是康德理論在數學世界的具體闡述！雖然數學世界完美無瑕，但是她自身系統裡也有本身解決不了的事情：存在一些真，但無法證實的命題。

對我來說數學並不艱深，也不抽象難懂，可是她就是神秘！不是因為人類的智力，認知能力有限，而是任何會思考的個體的理性本身對「自在之物」也無能為力！

每首樂曲都是無題。謎底——創造者的意志呼喚著我。

音樂除了合乎數學規則之外，她最奧妙之處，在於她能和美及心靈產生共鳴。可是樂譜裏的音符只是記錄了音高（頻率）和時值。它們和休止符全是一些數值的排列組合，何以某些組合能和大部分聽眾的審美觀和心靈產生共鳴，某些卻不可以呢？

當然，這在純理性方面是永遠都不能解釋的。

樂音除了傳達喜怒哀樂，她最寶貴的意義在於：她是一條超越理性的鑰匙，巧妙地打開通往自在之物——美的神秘之門。

無論是數學或者是音樂，我始終為神秘的美而著迷！

Newsletter of Department of Mathematics, CUHK, 2011-12, Issue 906
TO HAVE OR TO BE?
AN ALUMNUS’ VOLUNTEER WORK EXPERIENCE

One of our graduates, Ms. Jennifer YIP (Double-degree in Mathematics and Information Engineering, 2010), joined NAVTI Foundation (a non-government organization) this summer for a two-month volunteer work in Cameroon. The following is what she shared with us while she was working there.

‘Kimban! Kimban!’. Walking through the alleyways of Kumbo, Cameroon, I was often greeted by excited children with friendly shouts of ‘Kimban’, which means ‘White Man’ in the local language Lamso. My ordinary “Good morning” would leave the kids giggling while still inspecting all my moves.

Taking a break from school work, I joined NAVTI Foundation this summer for a 2-month volunteer work in Cameroon. Taking care of teaching computer literacy courses of the NGO’s computer center, I immersed myself in the wonderful African culture interacting with the local Cameroonians. Even though computer literacy is part of the curriculum in Cameroonian high schools, students sometimes only access to the school computer laboratory once a term. Thus a student who masters all the theoretical aspects presented in the curriculum is not even confident in typing or using a mouse.

NAVTI’s computer center fills the gap by offering practical computer literacy classes at an affordable price. Students have ample time to practice different computer skills. The center is equipped with 16 computers; most of them are second-hand computers donated by corporations and individuals from mature countries. Not connected to the Internet, our classes focused on keyboarding and using Microsoft Office. In spite of the frequent power outage, students treasured their time in class. As computer is an extravagance to the ordinary household, students felt privileged to be in the NAVTI’s class.

Living in a modest neighbourhood in this small city, I was fascinated by the Cameroonian culture. They are always hospitable and willing to share the little things they have with everyone who passes by the household. Roasted corn from my neighbour was really delicious and it is so memorable to be treated for two dinners in the same evening by two different households.

The African experience gave me a new perspective in life. There are things that could never be described in words. The overcrowded 8-people taxi-size car, the muddy bumpy road, the boundless starry sky, the hugs and kisses from my 3-year-old neighbours... It is the small things in the day-to-day country life that enrich my experience most.

Fellow students, step out of your comfort zone and take up the challenge to serve the world. There is much more in giving than receiving.

For information of and donation to NAVTI Foundation, please visit:
www.navtifoundation.org

Newsletter of Department of Mathematics, CUHK, 2011-12, Issue 9 07
Enrichment Programme for Young Mathematics Talents (EPYMT) has seen another successful summer. In the year 2011, over 150 students from various local and international schools were admitted into four courses. Here we share some encouraging opinions of students and parents.

Parent of a student, K. CHOW

“The program has been a rewarding experience for my son. His professors, especially Professor Au, were engaging and helped him develop his passion for math and learning. I found he has matured a lot over the summer, becoming more responsible and independent. EPYMT has made a positive impact on his knowledge and personal development.”

Parent of a student, Mrs. WONG

“Thanks to the rich and challenging contents of the courses and the interesting and inspiring teaching of the professors, my son has since then built up determination to pursue further in mathematics.”

Overseas student, Colman YAU Ho Man

“I have learnt some interesting math which has never been taught in the curriculum I studied in the UK. With no doubt, the math I learnt in the EPYMT is difficult and abstract. The teaching assistants are very friendly and energetic so that the tutorial sessions were not dull at all. It is a wonderful experience for secondary school students who are eager for gaining advanced mathematical knowledge.”

Local student, FUNG Dalton Yin-Nam

“EPYMT also serves as a platform for students to exchange their knowledge and share their experiences. By joining this programme, I have met a lot of friends who share common interests.”

Local student, HO Sze Man

“參加這個暑期班，令我學到不少數學知識，啟發了我的數理邏輯和思考能力，還增強解難技巧。此外，在同學對授課主題不太完全掌握和未能完成習作的時候，助教們都願意為同學安排補課。”

Korean student, AHN Yong Jin

“As a person who aspires to study mathematics further in university, it was very enjoyable to study things that are normally not dealt with in high school. The teaching assistants were very knowledgeable and were skillful in their teaching methods.”

The registration period of the 2012 programme is tentatively scheduled from Feb to April 2012. For details, please visit: http://epymt.math.cuhk.edu.hk/index.html

Besides lectures and tutorials, we also organize guest talks for EPYMT students. This summer, we were honoured to have Prof. YUNG Po Lam (Rutgers University) and Dr. WONG Tin Lok (National University of Singapore) to give valuable talks to our students.
Hang Lung Mathematics Awards (HLMA), a research-oriented mathematics competition, is open for registration. If you are a school student and fond of mathematics research or have some innovative math ideas, please do not hesitate to join.

Registration Deadline
February 28, 2012

Report Submission Date
August 31, 2012

Online Registration and Details

The co-founders of HLMA, Mr. Ronnie C. CHAN (left), the Chairman of Hang Lung Properties and Prof. Shing-Tung YAU (middle), a world renowned mathematician with Mr. Michael SUEN Ming-yeung (right), Secretary for Education in the Awards Presentation of HLMA 2010.

Ms. WONG Ching (second right), Gold winner of 2010 HLMA

‘I have greatly enhanced my self-learning skill, which is always essential in studying mathematics. That’s why I will seize every opportunity to do research in the future.’

Mr. Ghaleo TSOI Kwok Wing (right), Gold winner of 2010 HLMA

‘If you are a high school student and are not satisfied by the math at school, I strongly recommend the HLMA competition. You will probably be fascinated by the inner beauty of mathematics and have a wonderful experience as we did.’

Ms. WONG Ching (second right), Gold winner of 2010 HLMA

‘I have greatly enhanced my self-learning skill, which is always essential in studying mathematics. That’s why I will seize every opportunity to do research in the future.’

Mr. Ghaleo TSOI Kwok Wing (right), Gold winner of 2010 HLMA

‘If you are a high school student and are not satisfied by the math at school, I strongly recommend the HLMA competition. You will probably be fascinated by the inner beauty of mathematics and have a wonderful experience as we did.’

2010年新世界數學獎

五位校友在系內撰寫了優秀的論文，並獲頒2010年新世界數學獎。

博士論文銀獎:
陳國威（右2，第2行）

碩士論文銀獎:
范善臻（左1，第2行）
吳嘉誠（左2，第3行）

學士論文金獎:
許向山（左6，第3行）
林嘉傑（左5，第3行）
在二零一零年暑假到了美國康奈爾大學 (Cornell University) 研究分形上的波動方程。這次經驗實在難忘，讓我得益不少。

在那裡，四位外國大學和我一起跟隨教授 Robert S. Strichartz 研究有關分形的題目。我和同組的同學一樣努力，研究氣氛濃烈。閒時，我們便會思考對方的題目，互相支持。有時我們會在系中工作，又有時到咖啡室工作，雖然辛苦，但是十分愉快。而每逢星期五，參加暑假研究計劃的大學生會輪流向大家匯報進度，學習有趣的數學。

暑假結束後，我也沒有停止思考那個題目，我每數日都會抽一小時來再想想未解決的問題。在十月，我有幸在 2010 Fall Eastern Sectional Meeting 報告我的研究成果。我最感自豪的是證明了在某些分形上波動方程具瞬時特性的猜想。其實十年前，Strichartz 教授在某篇論文裡已提出這個猜想，並指出證明這個猜想的難處。我花了半年，想了一個有趣的方法，就是透過波動方程和熱傳導方程的關係，證明了如果熱傳播速度足夠快的話，那麼波動方程便具瞬時特性。我明白到凡事不可輕易放棄。最後，真是十分感謝數學系給我在唸本科時便有做研究的寶貴機會。

為了獎勵助教，提高教學質素，本系於2010-11學年首設最佳助教獎。此獎的評選標準基於老師的推薦和同學的意見。首屆得獎者為吳哲宇、賴俊傑、肖晶晶。
2010-11 獎學金得主名單

捐款鳴謝
衷心感激吳恭孚教授、丘成桐教授（1969）、羅春光教授（1982）、李隆熙先生（2009）、余偉權博士（1979）以及一位無名氏慷慨解囊，於過去兩年合共捐贈約參拾伍萬圓港幣，以支持本系發展。特此鳴謝。

2010-11 獎學金得主名單

數學系校友獎學金

1973屆校友數學獎學金

陳國康紀念獎學金

曹熊知行博士數學獎學金

曹熊知行數學獎學金

朱如堂數學獎學金

數學系校友獎學金

潘恩鼎先生數學獎學金

1970屆聯合數學系校友獎學金

尤德爵士紀念基金獎學金

香港特別行政區政府獎學金

李寶椿本科生獎學金

東亞銀行金禧紀念獎學金

中環電腦系統獎學金

數學系學費獎

翟綽麟 陳浩傑 陳冠南 鄭兆康 鄭德安 張錦豐 招

c

珩 趙浩唯 曹祺傑 朱肇濠 鍾芷棋 何鎮洲 何顯揚 賀健達

何柏德 簡嘉賢 姜健明 劉嘉卓 劉煒業 李文俊 梁聿彤

李翠姿 李子健 伍志毅 敖啟彥 敖樹憲 潘銘基 蘇悅華

曾 琳 蔡潤楓 黃 靜 王浩生 王錫欽 黃紹華 黃偉健

黃洋港 任子俊 葉文謙

數學系本科生獎學金

陳浩源 洪浩洋 李漢伯 黃振賢 王思為 俞 暉 林文鑫

阮志豪

數學系優先取錄學生獎學金

吳恭孚教育基金（本科生研究交流計劃）

羅浩智 蔡春桃 林冠明 王浩生 何敏強 吳一 伍鋒明

阮志豪

CUHK-ETH Exchange Travel Scholarship

Caltech - HK Undergraduate Research Fellowship

周肇述

崇基數學獎學金

周肇述

崇基數學收費獎

崇基數學獎學金

崇基校友校獎貸款

崇基數學獎學金

崇基數學獎學金

崇基數學系新生獎學金

捐款鳴謝

衷心感激吳恭孚教授、丘成桐教授（1969）、羅春光教授（1982）、李隆熙先生（2009）、余偉權博士（1979）以及一位無名氏慷慨解囊，於過去兩年合共捐贈約參拾伍萬圓港幣，以支持本系發展。特此鳴謝。
Visitors

Julien BARRAL, University of Paris 13
Vieri BENCI, Università di Pisa
Daomin CAO, Chinese Academy of Sciences
Dongho CHAE, Sungkyunkwan University
I-Laing CHERN, National Taiwan University
Edward Norman DANCER, University of Sydney
Juan DA VILA, University of Chile
Pino Manuel DEL, University of Chile
Xinhan DONG, Hunan Normal University
Bjorn ENGQUIST, The University of Texas at Austin
Xuqian FAN, Jinan University
Hui FENG, Wuhan University
Mario A.T. FIGUEIREDO, Instituto Superior Tecnico
Week Tech GAN, University of California, San Diego
Alexander GRIGORYAN, University of Bielefeld
Boling GUO, Institute of Applied Physics & Computational Mathematics
Yves GUO, Goldman Sachs (Asia) L.L.C.
Emmanuel HEBEY , Université de Cergy-Pontoise
Qiya HU, The Chinese Academy of Sciences
Kazufumi ITO, North Carolina State University
Falconer KENNETH, University of St Andrews
Michal Antoni KOWALCZYK, Universidad de Chile
Tian Gang LEI, National Natural Science Foundation
Chi Kwong LI, The College of William & Mary
Chong LI, Zhejiang University
Wing Suet LI, Georgia Institute of Technology
Chang Shou LIN, National Taiwan University
Tai Chia LIN, National Taiwan University
Zhaoli LIU, Capital Normal University
Wei Ming NI, University of Minnesota
Frank PACARD, Universite Paris Est-Creteil Val de Marne
Xiaofeng REN, Georgia Washington University
Narn Rueih SHIEH, National Taiwan University
Shi SHU, Xiangtan University
Joel SMOLLER, University of Michigan
Panagiotis SOUGANIDIS, University of Chicago
Yang WANG, Michigan State University
Olof WIDLUND, Courant Institute of Mathematical Sciences, New York University
Matthias WINTER, Brunel University
Yau Shu WONG, University of Alberta
Jinchao XU, Penn State University
Shansen YAN, University of New England
Dong YE, Universite de Cergy-Pontoise
Jiu-Kang YU, Purdue University
Josinae ZERUBIA, INRIA, France
KeKe ZHANG, University of Exeter
Liqun ZHANG, Academy of Math & Systems Science Chinese Academy of Sciences
Shao-Liang ZHANG, Department of Computational Science and Engineering, Nagoya University
Huijiang ZHAO, Wuhan University
Feng ZHOU, East China Normal University
Hao-Min ZHOU, Georgia Institute of Technology

This summer, our students went to various universities outside Hong Kong to do research under the guidance of renowned mathematicians.

California Institute of Technology
Yuen Chi Ho

Cornell University
Guo Zijian, Yu Hui

Johns Hopkins University
Lam Chi Yeung, Wong Sze Wai

Joint Institute for Computational Sciences, Oak Ridge National Laboratory & University of Tennessee
Huang Hang, Tam Hiu Ching, Tang Man Hin, Wu Yi

University of Delaware
Ng Fung Ming, Li Hanbo, Lau Chung Keung John, Tsang Kam Piu

University of Waterloo
Chan Ho Yuen, Mak Cheuk Yu, He Yukun

Every year, scholars from different parts of the world come to our Department and the Institute of Mathematical Sciences. Their active participation and providence of expertise in our seminars, courses and other academic events have contributed substantially to our Department’s research and academic programmes.

Due to space limitation, we present here only a partial list of our visitors in 2010-11.

Coming Event
Mathematics and medical science seem to be entirely unrelated. How does abstract mathematics relate to our health? In this talk, the speaker will unveil the mystery of medical mathematics!

New Wave Mathematics

Speaker Prof. LUI Lok Ming Ronald
Date 25 February 2012 (Sat)
Time 10:30am
Venue Lee Shau Kee Building LT5, CUHK

Summer Undergraduate Research Experience

This summer, our students went to various universities outside Hong Kong to do research under the guidance of renowned mathematicians.