Optimization Theory

Optimization Theory
Tutorial 8

Wang Xia

2018/3/11



Optimization Theory

Table of Contents



Optimization Theory

‘—Supplementary Material

Table of Contents

Supplementary Material



Optimization Theory

Supplementary Material

Concepts

Direction of recession of C': we say that a vector d is a direction of
recession of C if x + ad € C for all z € C' and a > 0.

Recession of cone of C': the set of all directions of recession is said
to be recession of cone of C'. It is a cone containing the origin. It
is denoted by R¢.

Lineality space: the set of direction of recession d whose opposite,
—d, are also directions of recession:

Lo =RecN (—Rc).

It is denoted by L. Thus d € L¢ if and only if the entire line
{z + ad|a € R} is contained in C for every z € C.

Epigraph: the epigraph of a function f: X — [—o00, 00], where
X C R", is defined to be the subset of "' given by

epi(f) = {(z,w)le € X,w € R, f(2) < w}.
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Theorem
Saddle Point: A pair of vectors z* € X and z* € Z is called a
saddle point of ¢ if

d(x*,2) < p(x*,2") < p(x,2"),Voe € X,Vz € Z.

minimax equality:

supezinfrex P(x, 2) = infrex sup,cz¢(z, 2).
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Saddle Point and Minimax Theory

Theorem
A pair (z*,2*) is a saddle point of ¢ if and only if the minimax
equality holds, and x* is an optimal solution of the problem:

minimizesup, ¢ z(x, z), subject tor € X,
while z* is an optimal solution of the problem

maximizeinfyc x p(x, z), subject toz € Z
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Recession Cone Theorem

Let C be a nonempty closed convex set.
(a) The recession cone R¢ is closed and convex.

(b) A vector d belongs to R¢ if and only if there exists a vector
x € C such that x 4+ ad € C for all a > 0.
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Properties of Recession Cones

Let C be a nonempty closed convex set.

(a) Rc¢ contains a nonzero direction if and only if C' is unbounded.

(b) Rc = Ryicy-

(c) For any collection of closed convex sets Cj,i € I, where I is
an arbitrary index set and N;c;C; # 0, we have

Rﬂiejci - ﬁ’iEIRCi .

(d) Let W be a compact and convex subset of 1, and let A be
an m X n matrix. The recession cone of the set

V={zeClAz ¢ W}

(assuming this set is nonempty) is Rc N N(A), where N(A)
is the nullspace of A.
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Properties of Lineality Space

Let C be a nonempty closed convex set of R™.

(a) Lc¢ is a subspace of R™.

(b) Lc = Lyicy-

(c) For any collection of closed convex sets Cj,i € I, where I is
an arbitrary index set and N;c;C; # 0, we have

Lﬂiejci - ﬁ’iEILCi .

(d) Let W be a compact and convex subset of 1, and let A be
an m X n matrix. The lineality space of the set

V={zeClAz ¢ W}

(assuming this set is nonempty) is Lc N N(A), where N(A) is
the nullspace of A.
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Solution

Using
Lo = Re N (—Re).

and Properties of Rc¢.



Optimization Theory

‘—Supplementary Material

Decomposition of a convex set

Let C be a nonempty subest of R™. Then, for every subspace S
that is contained in the lineality space L¢, we have

C=58+(CnSh).
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Decomposition of a convex set

Let C be a nonempty subest of R™. Then, for every subspace S
that is contained in the lineality space L¢, we have

C=58+(CnSh).

Proof: We can decompose " as S+ S+, soforz € C,let z = d+ 2
for some d € S and 2z € S'. Because —d € S C L¢, the vector —d is a
direction of recession of C, so the vector z — d, which is equal to z, belongs
to C, implying that 2 € C N S+. Thus, we have z = d + z with d € S and
z € C NS+ showing that C € S+ (C N SL).

Conversely, if € S+ (CNSL), then z = d + z with d € S and
z € CNSL. Thus, we have z € C. Furthermore, because S C L¢, the
vector d is a direction of recession of C, implying that d + z € C. Hence
z € C, showing that S+ (CnS+)cC. Q.E.D.
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Let f: R" — (—o0, 0] be a closed proper convex function and
consider the level sets

Vy={alf(z) <7}, veR

Then:

(a) All the nonempty level sets V, have the same recession cone,
denoted Ry, and given by

Rf - {d‘(d 0) € Repz( )}

where R,,;(r) Is the recession cone of the epigraph of f.

(b) If one nonempty level set V,, is compact, then all of these level
sets are compact.
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Solution

(a) Fix a y such that V,, is nonempty, consider

S ={(z,V)f (=) <7},
S =epi(f) N{(z,r)|x € R"}.
Rs = Repi(r) N{(d,0)[d € R"} = {(d,0)[(d,0) € Repi)},
independent of ~.
(b)
V., compact < Ry, does NOT contain a nonzero direction
= Rvﬁdoes NOT contain a nonzero direction

= V,, compact.
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