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Continuity of Convex Functions

Theorem

If f:R" — R is convex, then it is continuous. More generally, if
f:R" = (—o0,00] is a proper convex function, then f, restricted
to dom(f), is continuous over the relative interior of dom(f).



Optimization Theory

Continuity of Convex Functions

Theorem
If C is closed interval of the real line, and f : C — R is closed and
convex, then f is continuous over C'.
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Hyperplane

A hyperplane H in R" is a set of the form {z|a’z = b} where a is
a nonzero vector in i" and b is a scalar.
If z € H, then

H = z|d'z = d'z},

or
H =1+ {z]|d'z = 0}.

H is an affine set that is parallel to the subspace {z|a’z = 0.}
{z|a'z > b}, {z|d'z < b}

are called the closed halfspaces associated with the hyperplane H.
{z]d'z > b}, {z|a'z < b}

are called the open halfspaces associated with the hyperplane H.
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Supporting Hyperplane Theorem

Theorem

Let C' be a nonempty convex subset of R™ and let T be a vector in
R™. If T is not an interior point of C, there exists a hyperplane
that passes through x and contains C' in one of its closed
halfplaces, i.e., there exists a vector a # 0 such that

az <adz, Vo eC.
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Separating Hyperplane Theorem

Theorem

Let Cy and Cy be two nonempty convex subsets of R™. If Cy and
Cs are disjoint, there exists a hyperplane that separates them, i.e.,
there exists a vector a # 0 such that

a'ry # a'zo, Va1 € C1, Vs € Oy,
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Strict Separation Theorem

Theorem

Let C and Cy be two disjoint nonempty convex sets. There exists

a hyperplane that strictly separates C'y and Cs under any one of
the following five conditions:

(1) Cy — C1 is closed.

(2) C, is closed and C5 is compact.
(3) Cy and Cy are polyhedral.

(4) Cy and Cy are closed, and

R01 N RC2 = L01 N LC2,

where R¢, and L¢, denotes the recession cone and the
lineality space of C;, i = 1,2.

(5) C\ is closed, Cy is polyhedral, and Rc, N Re, C L¢y, .
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Corollary of Strict Separation Theorem

Theorem

The closure of the convex hull of a set C is the intersection of the
closed halfspaces that contain C. In particular, a closed convex set
is the intersection of the closed halfspaces that contain it.



Optimization Theory

‘— Exercise

Table of Contents

Exercise



Optimization Theory

‘— Exercise

EX1

Give an example of two closed convex sets that are disjoint but
cannot be strictly separated.
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EX 1

Give an example of two closed convex sets that are disjoint but
cannot be strictly separated.

solution:

Take C = {z € R*|zy # 0}

D = {z € R |z1z2 > 1}.
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Ex 2

Express the closed convex set {z € R2 |z 22 > 1} as an
intersection of halfspaces.

Solution. The set is the intersection of all supporting halfspaces at points in its
boundary, which is given by {z € Rﬁ_ | 3o = 1}. The supporting hyperplane at
x = (t,1/t) is given by

w1 /1% 4 x2 = 2/1,

80 wWe can express the set as

[z € R? | 21/t* + 22 > 2/1}.

t=0
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‘— Exercise

Ex 2

Let C ={z € R"| |[|#|]lcc <1}, the loo—norm unit ball in R",
and let Z be a point in the boundary of C. Identity the supporting
hyperplanes of C at & explicitly.

Solution. sTz > s for all z € C if and only if
s5i<0 #=1

si >0 #;=-1
si=0 =1<i;<1.



Optimization Theory

‘— Exercise

Ex 3

Let f: R™ — R be a convex function and X be a bounded set in
R™. Show that f is Lipschitz continuous over X, i.e., there exists
a positive scalar L such that

|f(z) = f(y)| < Ll|z —yl|,Vz,y € X.
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‘— Exercise

Let € be a positive scalar and let C. be the set given by
Ce = {z | |z — z|| €€, for some z € cl(X)}.

We claim that the set (', is compact. Indeed, since X is bounded, so is its closure,
which implies that ||z|| < max,ca(x) ||z]| + € for all z € C., showing that C. is
bounded. To show the closedness of C., let {z1} be a sequence in C. converging
to some z. By the definition of C., there is a corresponding sequence {xx} in
cl(X) such that

|21 — zi| <, v k. (2.1)

Because cl(X) is compact, {zx} has a subsequence converging to some z € ¢l(X).
Without loss of generality, we may assume that {z\} converges to z € cl(X). By
taking the limit in Eq. (2.1) as k — oo, we obtain ||z — z|| < € with = € cl(X),
showing that z € C.. Hence, C. is closed.
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‘— Exercise

Ex 3

We now show that f has the Lipschitz property over X. Let x and y be
two distinct points in X. Then, by the definition of C¢, the point

€
2=yt ——(y—x)
lly — |

is in Ce. Thus
yo -2l . e
ly—zll+e  [ly—zl +e
showing that y is a convex combination of z € C¢ and = € C.. By convexity of
f, we have

)

ly — = ‘
1) € PP @)+ s @)

implying that

lly — =l lly — =l :
ﬂm—f&)iﬁﬁzﬂi;ﬁu)—fwﬂS-—:——(igfm)—ggfwow
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Ex 3

where in the last inequality we use Weierstrass’ theorem (f is continuous over
R"™ by Prop. 1.4.6 and C. is compact). By switching the roles of z and y, we

similarly obtain

flz) = fly) < = = il (max flu) — min f(l.')) R
€ uiECy vECy
which combined with the preceding relation yields | fle)y = f (g)| < Lz = yl|,

where L = (maxueg, f(u) — min,ee, f(l-‘))/"f'



Optimization Theory

Exercise

Ex 4

Let C'y and C5 be nonempty convex subset of ", and let B denote
the unit ball in ", B = {||z|| < 1}. A hyperplane H is said to
separate strongly C; and C5 and if there exists an € > 0 such that
C1 + €B is contained in one of the open halfspaces associated with
H and C5 + €B is contained in the other. Show that:
(a) The following three conditions are equivalent.

(i) There exists a hyperplane separating strongly C; and C\.

(i) There exists a vector a € R" such that

infrec, x> supyec,a’x.

(ill) infrecy maccs|l®1 — z2]| > 0,i.e.,0 # cl(Cy — C1).
(b) If Cy and Cy are disjoint, any one of the five conditions for

strict separation, implies that C and Cy can be strongly

separated.
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‘— Exercise

Ex 4

(a) We first show that (i) implies (ii). Suppose that C; and C5 can be separated
strongly. By definition, this implies that for some nonzero vector a € R", b € R,

and € > 0, we have
Ci+eBC{x|a'z>b}

Ca+4eB C {x|d'z < b},
where B denotes the closed unit ball. Since a # 0, we also have
inf{a'y |y € B} <0, sup{a'y | y € B} > 0.
Therefore, it follows from the preceding relations that
b<inf{a'z +edy|x € Cr,y € B} <inf{a'z |z € C1},
b > sup{a’'z +ead'y |z € C2,y € B} > sup{a’z | z € C2}.
Thus, there exists a vector a € R™ such that

. i r
inf 'z > sup az,
z€C z€Cy



Optimization Theory

‘— Exercise

Ex 4

Next, we show that (ii) implies (iii). Suppose that (ii) holds, ie., there
exists some vector a € R™ such that

inf a'z > sup a'z, (2.15)
zeCy zeCy

Using the Schwartz inequality, we see that
0< inf a'z— sup a'z
el z€Cy

= inf a’(xl —T2),
T1€CY, z9€Cy

< inf_alllzs — el
T1€CY, 9€Cy

It follows that

inf l|lz1 — z2|| > 0,
r1€C],x9€CH

thus proving (iii).
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Ex 4

Finally, we show that (iii) implies (i). If (iii) holds, we have for some € > 0,

inf [|z1 — z2|| > 2¢ > 0.
z1€C1, z2€C

From this we obtain for all 1 € C1, all 2 € C2, and for all y1, y2 with ||y1| <,
g2l < e,

(@1 +y1) = (22 + y2)l| = |21 — 2| = [lyall = [ly2[l > O,

which implies that 0 ¢ (C1+€eB)— (C2+ €B). Therefore, the convex sets C1 +¢B
and C2 + eB are disjoint. By the Separating Hyperplane Theorem, we see that
C1 + eB and Cs + €B can be separated, i.e., C; + ¢B and Cs + €B lie in opposite
closed halfspaces associated with the hyperplane that separates them. Then,
the sets Cy + (¢/2)B and C3 + (¢/2)B lie in opposite open halfspaces, which by
definition implies that C1 and C2 can be separated strongly.
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Ex 4

(b) Since C; and C are disjoint, we have 0 ¢ (Cy — C2). Any one of conditions
(2)-(5) of Prop. 2.4.3 imply condition (1) of that proposition (see the discussion
in the proof of Prop. 2.4.3), which states that the set C1 — C2 is closed, i.e.,

c(Cy = Cs) = C1 = Ch.
Hence, we have 0 ¢ cl(C1 — C2), which implies that

inf |z1 — z2| > 0.
T1E€CT, 20€CH

From part (a), it follows that there exists a hyperplane separating Ci1 and C:
strongly.
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