MATH4230 - Optimization Theory
2017-2018

Mid-term (60 minutes)

1. (40marks)

a. Let C be a nonempty subset of R”, and let A\; and As be positive scalars. Show that if C' is
convex, then (A; + A\2)C' = A\ C' + A2C. Show by example that this need not be true when C
is not convex.

b. Show that a subset C is a convex cone if and only if it is closed under addition and positive
scalar multiplication, i.e., C + C' C C, and vC C C for all v > 0.

Solution

a. We always have (A1 +A2)C' C A C' 4+ \2C, even if C' is not convex. To show the reverse inclusion
assuming C' is convex, note that a vector z in A\;C' + A2C' is of the form z = Ajz1 + Aoxa,
where z1,z2 € C'. By convexity of C', we have
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and it follows that
T =2+ Aoxs € ()\1 + /\2)0,

so M C + \C C (Al + Az)c

For a counterexample C' is not convex, let C' be a set in R™ consisting of two vectors, 0 and
x # 0, and let Ay = Ay = 1. Then C is not convex and (A; + A\2)C = 2C = {0, 2z}, while
AMC 4+ XC =C+C ={0,z,2x}, showing that (A + X2)C # A C + \C.

b. Let C be a convex cone. Then vC' C C, for all v > 0, by the definition of cone. Furthermore, by
convexity of C, for all z,y € C, we have z € C', where z = %(m—{—y) Hence (z +y) =2z € C,
since C'is a cone, and it follows that C' + C' C C.

Conversely, assume that C'+ C C C' and yC C C. Then C' is a cone. Furthermore, if 2,y € C
and a € (0,1), we have az € C and (1 —a)y € C and az + (1 —a)y € C. Hence C is convex.

2. (40marks) Prove the following statements:

a. If X and X, are convex sets that can be separated by a hyperplane, and X; is open, then X5
and X5 are disjoint.

b. If f: R” — R is a convex function that is bounded in the sense that for some v > 0, | f(z)| < v
for all x € R™, then the problem

minimize  f(z)
subject to z € R™.

has a solution.
Solution
a. Since there exist a hyperplane separates them, that is, Ja and b such that
a’xq <b< aTxg, 1 € Xq,29 € Xo.

Suppose X1 N Xy # 0. , so z* € X; N Xo, we have a’z* = b.



Since z* € X7, which is open, we get x* + e”g—” € X1, where € > 0. then

aT(z* + e-2) = b+ ellal| > b
l|all
So we get the contradiction as a’z; < b,Vz; € X;.
Therefore We get X, N Xy, =0

b. Suppose f is not constant, i.e., 3z,y € RN : f(x) > f(y). Since f is convex, we have:

x—(1=Ny

f@) <A

)+ (1 =N f(y), YA€ (0,1).

Hence, f(w)—(l)\—k)f(y) < f(w—(i—k))_ Since f(z) > f(y). f(w)—(lk—k)f(y) — f(w);f(y) + fly) =
o0 as A — 0. Hence f is not bounded which is contradicted with |f(z)| < v, V.
Therefore, f is constant and the minimization has a solution.

3. a. (20marks) Let C be a nonempty convex cone. Show that ¢l(C) and ri(C) are also convex cones.
b. (Optional 5marks) Let C = cone({z1, ..., }). Show that

ri(C) = {Zaimﬂai >0,i=1,...,m}.

i=1
Solution

a. Let z € cl(C) and let « be a positive scalar. Then, there exists a sequence {z} € C such that

x — x, and since C' is a cone ,axy € C for all k. Furthermore, azyp — az, implying that
ax € cl(C). Hence, cl(C) is a cone, and it also convex since the closure of a convex set is
convex.
By Nonemptiness of Relative Interior Theorem, the relative interior of a nonempty convex
set is convex. To show that ri(C) is a cone, let € ri(C). Then, € C and since C is a
cone, ax € C for all @ > 0. By the Line Segment Principle, all the points on the line segment
connecting x and ax, except possibly az, belong to ri(C),

ie. B eri(C),B e (a,1]or[1,a).

Since this is true for every a > 0, it follows that Sz € ri(C) for all # > 0, then showing that
ri(C) is a cone.

i=m
b. Consider the linear transformation A that maps (aq,...,q,;,) € ™ into > a;z; € R™. Note
i=1
that C is the image of the nonempty convex set

{(ary ..., am)|ar > 0,...,a, >0}
under A. Therefore, we have

ri(C) = ri(A-{(a1,...,am >0)})
A-ri((ar,...,am, >0))  (prop.1.3.6)

A'{(O{l,...,amZO)}

=m
{ S oajzi|lar >0, > 0} (prop.1.3.6).
i—1

Alternative solution of b:
WLOG, assume z1,x3,...,T,, are linearly independent. C' is a cone, then

Cz{ZaixﬂquO,...,amZO}. (%)
i=1



i=m
Denote A = { Y x| >0, .0, > 0}. We will prove A = ri(C).
i=1

Obviously, A is open. Vz € A, there exists a ball B(z,r;) such that B(z,r,) C A C C. And
ACaff(C). Thus (B(z,r;) Naff(C)) C C. Hence, z € ri(C).

=m
On the other hand, Vz € ri(C),z € C. Then, z = > a;z;,a; > 0. It suffices to prove that
i=1

a; # 0. Otherwise, WLOG, suppose = > «a;x;. Obviously, & = i a;z; € C,ap > 0. By

i#k i=1
Prolongation Lemma, there exist v > 0 such that z +y(z — ) = > a;z; + y(—agzy) € C.
i#k
i=m
—vagx < 0, it contradicts with (x). Hence, x = > ajz;, a; > 0.
i=1



