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Suggested Solution to Assignment 6

Exercise 6.1

2. Note that in the spherical coordinates (r, θ, φ),

∆3 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2
.

Thus,

urr +
2

r
ur = ∆3u = k2u.

Let u = v/r, we get

ur =
vr
r
− v

r2
, urr =

vrr
r
− 2vr

r2
+

2v

r3
.

Hence, by the equation of u, vrr = k2v, which implies v(r) = Ae−kr + Bekr, where A, B are constants.
Therefore, u(r) = A1

re
−kr +B 1

re
kr, where A, B are constants. �

4. We have known that −c1r
−1 + c2 is a solution, where c1 and c2 satisfy the equation:

−c1a
−1 + c2 = A, −c1b

−1 + c2 = B.

Hence,

u(x, t) = ab
A−B
b− a

r−1 +A+ b
B −A
b− a

, where r =
√
x2 + y2 + z2,

is a solution. Therefore, it is the unique solution by the Uniqueness Theorem of the Dirichlet problem for
the Laplace’s equation. �

6. Firstly, we find a solution depending only on r. Let u(r), where r =
√
x2 + y2, is a solution. As before,

we have

u =
1

4
r2 + c1 ln r + c2, where c1, c2 are constants.

By the boundary conditions, we get

1

4
a2 + c1 ln a+ c2 = 0,

1

4
b2 + c1 ln b+ c2 = 0,

Hence,

u(x, y) =
1

4
(r2 − a2)− b2 − a2

4(ln b− ln a)
(ln r − ln a),

is the unique solution by the Uniqueness Theorem. �

7. Firstly, we look for a solution depending only on r =
√
x2 + y2 + z2. Let u(r) be a solution, then as

before,

urr +
2

r
ur = 1,

from which we have

u =
1

6
r2 +

c1

r
+ c2, wherec1, c2 are constants.

Thus, by the boundary conditions, we get

1

6
a2 +

c1

a
+ c2 = 0,

1

6
b2 +

c1

b
+ c2 = 0.

Hence,

u(x, y) =
1

6
(r2 − a2) + ab

a+ b

6
(
1

r
− 1

a
),

is the unique solution by the Uniqueness Theorem. �
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9. (a) Firstly, we look for a solution depending only on r =
√
x2 + y2 + z2. Let u(r) be a solution, then as

before,

urr +
2

r
ur = 0,

from which we have ur =
c

r
+ d, where c, d are constants. Thus, by the boundary conditions, we

have
c+ d = 100, c = 4γ.

Therefore, u = 4γ
r + 100− 4γ. u is unique by the maximal principle.

(b) The hottest temperature is 100 ◦C, the coldest is 100− 2γ.

(c) By assumption, we have 100− 2γ = 20, therefore, γ = 40.

11. Integrating the equation ∆u = f and using the divergence theorem,∫∫∫
D

f dxdydz =

∫∫∫
D

∆u dxdydz =

∫∫
bdy(D)

∂u

∂n
dS =

∫∫
bdy(D)

g dS.

Hence, there is no solution unless ∫∫∫
D

f dxdydz =

∫∫
bdy(D)

g dS. �

Exercise 6.2

1. By the boundary conditions, we can guess ux(x, y) = x − a and uy(x, y) = −y + b. Luckily these also
satisfy the equation. Hence,

u(x, y) =
1

2
x2 − 1

2
y2 − ax+ by + c, where c is any constant,

are solutions. Actually, we can prove that they are all solutions by the Hopf maximum principle. �

2. Let (m,n) 6= (m′, n′), then ∫ π

0

∫ π

0
(sinmy sinnz)(sinm′y sinn′z)dydz

=(

∫ π

0
sinmy sinm′ydy)(

∫ π

0
sinnz sinn′zdz) = 0,

so the eigenfunctions {sinmy sinnz} are orthogonal on the squre {0 < y < π, 0 < z < π}. �

3. Let u(x, y) = X(x)Y (y), then

X ′′

X
= −Y

′′

Y
= λ, X(0) = Y ′(0) = Y ′(π) = 0.

Hence,
λn = n2, Yn(y) = cos(ny), X0 = x, Xn+1 = sinh[(n+ 1)x], n = 0, 1, 2, . . .

Therefore,

u(x, y) = A0x+

∞∑
n=1

An sinh(nx) cos(ny).
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By the inhomogeneous boundary condition, we get

A0π +

∞∑
n=1

An sinh(nπ) cos(ny) =
1

2
(1 + cos 2y),

which implies

A0 =
1

2π
, A2 =

1

2 sinh(2π)
, An = 0, if n 6= 0, 2.

Therefore,

u(x, y) =
x

2π
+

1

2 sinh(2π)
sinh(2x) cos(2y). �

4. Let u1 satisfies

∆u1 = 0, in the squre {0 < x < 1, 0 < y < 1},
u1(x, 0) = x, u1(x, 1) = u1,x(0, y) = u1,x(1, y) = 0,

and u2 satisfies

∆u2 = 0, in the squre {0 < x < 1, 0 < y < 1},
u2(x, 0) = u2(x, 1) = u2,x(0, y) = 0, u2,x(1, y) = y2,

then u = u1 + u2 is a harmonic function which we want to find.

By the method of separate variables,

u1 = −A0

2
(y − 1) +

∞∑
n=1

An cos(nπx)[cosh(nπy)− coth(nπ) sinh(nπy)],

where

A0 = 1, An = 2

∫ 1

0
x cos(nπx)dx =

2

n2π2
[(−1)n − 1], n = 1, 2, . . . .

And

u2 =

∞∑
n=1

Bn cosh(nπx) sin(nπy),

where

Bn =
2

nπ sinh(nπ)

∫ 1

0
y2 sin(nπy)dy

=
2

sinh(nπ)

{
(−1)n+1

n2π2
+

2

n4π4
[(−1)n − 1]

}
, n = 1, 2, . . . .

Therefore,

u = −1

2
(y − 1) +

∞∑
n=1

An cos(nπx)[cosh(nπy)− coth(nπ) sinh(nπy)]

+

∞∑
n=1

Bn cosh(nπx) sin(nπy),

where

An =
2

n2π2
[(−1)n − 1], Bn =

2

sinh(nπ)

{
(−1)n+1

n2π2
+

2

n4π4
[(−1)n − 1]

}
, n = 1, 2, . . . . �
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6. Let u(x, y, z) = X(x)Y (y)Z(z), then

X ′′

X
+
Y ′′

Y
+
Z ′′

Z
= 0, X ′(0) = X ′(1) = Y ′(0) = Y ′(1) = Z ′(0) = 0.

Hence,
Xm(x) = cos(mπx), Yn(y) = cos(nπy), m, n = 0, 1, 2, . . . ,

and
Z ′′ = (m2 + n2)π2Z, Z ′(0) = 0.

Therefore,

u(x, y, z) =
1

4
A00 +

1

2

∞∑
m=0

Am0 cos(mπx) cosh(mπz) +
1

2

∞∑
n=0

A0n cos(nπy) cosh(nπz)

+

∞∑
m=0

∞∑
n=0

Amn cos(mπx) cos(nπy) cosh(
√
m2 + n2πz).

Finally, by the inhomogeneous boundary condition, we get

g(x, y) =
1

2

∞∑
m=0

Am0mπ sinh(mπ) cos(mπx) cosh(mπz) +
1

2

∞∑
n=0

A0nnπ sinh(nπ) cos(nπy) cosh(nπz)

+

∞∑
m=0

∞∑
n=0

Amn
√
m2 + n2π sinh(

√
m2 + n2π) cos(mπx) cos(nπy) cosh(

√
m2 + n2πz),

which implies

Amn =
4√

m2 + n2)π sinh(
√
m2 + n2π)

∫ 1

0

∫ 1

0
g(x, y) cos(mπx) cos(nπy)dxdy, m2 + n2 6= 0,

and A00 is any constant. We can prove that they are all solutions by the Hopf maximum. �

7(a). Let u(x, y) = X(x)Y (y), then
X ′′

X
+
Y ′′

Y
= 0, X(0) = X(π) = 0.

Hence,
Xn(x) = sin(nπ), n = 1, 2, . . . , and Y ′′ = n2Y, lim

y→0
Y (y) = 0.

Thus,

u(x, y) =
∞∑
n=1

An sin(nπ)e−ny.

Finally, by the inhomogeneous condition h(x) =
∞∑
n=1

An sin(nx), we have

An =
2

π

∫ π

0
h(x) sin(nx)dx.

And the solution is

u(x, y) =
∞∑
n=1

2

π

(∫ π

0
h(x) sin(nx)dx

)
sin(nx)e−ny. �
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Exercise 6.3

1. (a) By the Maximum Principle,

max
D̄

u = max
∂D

u = max
θ

(3 sin 2θ + 1) = 4.

(b) By the Mean Value property,

u(0, 0) =
1

2π

∫ 2π

0
(3 sin 2θ + 1)dθ = 1. �

2. By the formula (10)-(12) in the textbook,

u(x, y) =
1

2
A0 +

∞∑
n=1

rn(An cosnθ +Bn sinnθ),

where

An =
1

πan

∫ 2π

0
h(θ) cosnθdθ, Bn =

1

πan

∫ 2π

0
h(θ) sinnθdθ.

Since h(θ) = 1 + 3 sin θ, we get

A0 = 2, An = 0 (n > 0), B1 =
3

a
, Bm = 0 (m > 1).

Hence,

u(r, θ) = 1 +
3r

a
sin θ.

3. As before, since

h(θ) = sin3 θ =
3

4
sin θ − 1

4
sin 3θ,

we get

An = 0 (n ∈ N), B1 =
3

4a
, B3 = − 1

4a3
, Bm = 0 (m 6= 1, 3).

Use the same way, the solution should be

u(r, θ) =
3

4a
r sin θ − r3

4a3
sin 3θ. �

Problem 4. By Poisson’s formula,

u(x, y) = u(r, θ) = (1− r2)

∫ 2π

0

u(1, φ)

1− 2r cos(θ − φ) + r2

dφ

2π
≤ 1− r2

(1− r)2

∫ 2π

0
u(1, φ)

dφ

2π
=

1 + r

1− r
u(0, 0),

since u ≥ 0, cos(θ − φ) ≤ 1 and u has the Mean-Value Property. Similarly,

u(x, y) = u(r, θ) = (1− r2)

∫ 2π

0

u(1, φ)

1− 2r cos(θ − φ) + r2

dφ

2π
≥ 1− r2

(1 + r)2

∫ 2π

0
u(1, φ)

dφ

2π
=

1− r
1 + r

u(0, 0),

since u ≥ 0, cos(θ − φ) ≥ −1 and u has the Mean-Value Property.

Problem 5. (a)Use the Strong Maximum Principle.

(b)By Problem 4(r = 1/2), 1
3 = 1−1/2

1+1/2 ≤ u(x, y) ≤ 1+1/2
1−1/2 = 3
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Problem 6. Since u is a harmonic function in B1(0) \ (0, 0), u(x, y) is smooth in B1(0) \ (0, 0). Define

v(x, y) = v(r, θ) =
1/4− r2

2π

∫ 2π

0

h(φ)

1/4− 2 cos(θ − φ) + r2
dφ, for r < 1/2,

where h(φ) = u(1/2, φ), and w := u− v, then v(x, y) is a harmonic function in B1/2(0), w is a harmonic
function in B1/2(0)\(0, 0), w = 0 on ∂B1/2(0) and w is bounded in B1/2(0). Now, it suffices to show that
w ≡ 0 in B1/2(0) \ (0, 0):

For any fixed (x0, y0) ∈ B1/2(0) \ (0, 0), r0 :=
√
x2

0 + y2
0. ∀ε > 0, define vε(r) := −ε log(2r), which is

harmonic in B1/2(0) \ (0, 0). Since vε = 0 on ∂B1/2(0) and limr→0+ vε = +∞, we can choose r1 small
enough such that 0 < r1 < r0 and vε(r) > supB1/2\(0,0)w on r = r1. Thus, by the Maximum Principle on

A := {(x, y) : r1 <
√
x2 + y2 < 1/2}, we get w(x0, y0) ≤ −ε log(2r0). Let ε → 0+, we get w(x0, y0) ≤ 0.

Similarly, for −w we get −w(x0, y0) ≤ 0. Therefore, w(x0, y0) = 0.

Exercise 6.4

1. Since the only difference between the formulas of harmonic function in the interior and exterior of a disk
is that r and a are replaced by r−1 and a−1. Therefore, by the result in the exercise 6.4.2

u(r, θ) = 1 +
3a

r
sin θ. �

6. Using the separation of variables technique, we have

Θ′′ + λΘ = 0, r2R′′ + rR′ − λR = 0.

So the homogenous conditions lead to

Θ′′ + λΘ = 0, Θ(0) = Θ(π) = 0.

Hence,
λn = n2, Θ(θ) = sinnθ, n = 1, 2, . . . ,

and then
Rn(r) = rn, n = 1, 2, . . . .

u(r, θ) =

∞∑
n=1

Anr
n sinnθ.

Finally, the inhomogeneous boundary condition requires that

π sin θ − sin 2θ =

∞∑
n=1

An sinnθ,

which implies
A1 = π, A2 = −1, An = 0 (n 6= 1, 2).

So the solution is
u(r, θ) = πr sin θ − r2 sin 2θ. �

10. By the example 1 in the textbook Section 6.4 (Please do it again) and letting β = π/2, h(θ) = 1, we have

u(r, θ) =
∞∑
n=1

Anr
2n sin 2nθ,

6
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where

An = a1−2n 2

nπ

∫ π/2

0
sin(2nθ)dθ = a1−2n 1

n2π
[1− (−1)n].

The first two nonzero terms are

2

aπ
r2 sin 2θ,

2

9a5π
r6 sin 6θ. �

11. Multiplying u in the both sides of equation and using the divergence theorem,∫
∂D

u
∂u

∂n
−
∫
D
|∇u|2 = 0.

Using Robin boundary condition,

−a
∫
∂D

u2 −
∫
D
|∇u|2 = 0,

which implies ∇u = 0 in the D and u = 0 on ∂D since a > 0. So u ≡ 0 in D.

13. It is similiar to the Example 1 in Section 6.4 in the textbook. Here we only give the result and leave the
details to you.

For the eigenvalue problem of Θ(θ), we have

λn = (
nπ

β − α
)2, Θn(θ) = sin

nπ(θ − α)

β − α
, n = 1, 2, . . . .

For the eigenvalue problem of R(r), we have

Rn(r) = Anr
nπ
β−α +Bnr

− nπ
β−α , n = 1, 2, . . . .

So the solution is

u(r, θ) =

∞∑
n=1

(Anr
nπ
β−α +Bnr

− nπ
β−α ) sin

nπ(θ − α)

β − α
.

By setting r = a and r = b the coefficients An and Bn should satisfy
Ana

nπ
β−α +Bna

− nπ
β−α =

2

β − α

∫ β

α
g(θ) sin

nπ(θ − α)

β − α
dθ

Anb
nπ
β−α +Bnb

− nπ
β−α =

2

β − α

∫ β

α
h(θ) sin

nπ(θ − α)

β − α
dθ

,

then 
An =

Aa
nπ
β−α −Bb

nπ
β−α

a
2 nπ
β−α − b2

nπ
β−α

Bn =
Aa
− nπ
β−α −Bb−

nπ
β−α

a
−2 nπ

β−α − b−2 nπ
β−α

,

where

A =
2

β − α

∫ β

α
g(θ) sin

nπ(θ − α)

β − α
dθ, B =

2

β − α

∫ β

α
h(θ) sin

nπ(θ − α)

β − α
dθ. �

Problem 7. Write u(r, θ) = R(r)Θ(θ), then r2R′′

R + rR
′

R = −Θ′

Θ =: λ and Θ′(0) = 0 = Θ(π),⇒ λ =
∫ π
0 |Θ

′|2∫ π
0 Θ2 > 0 since u

is nontrivial. ⇒ We can write λ = β2, β > 0 and Θ′′ + β2Θ = 0,

⇒ βn = 1/2 + n, Θn = cos(βnθ), n = 0, 1, 2, ...

7
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⇒ u(r, θ) =
∑∞

n=0(cnr
βn + dnr

−βn) cos(βnθ)

By the boundary conditions, u(1, θ) = cos3(θ/2) = 1/4 cos(3θ/2) + 3/4 cos(θ/2) and u(2, θ) = 4 cos(5θ/2)

⇒ c1 +d1 = 1/4; c0 +d0 = 3/4; cn+dn = 0 if n 6= 0, 1; c22β2 +d22−β2 = 4; cn2βn +dn2−βn = 0 if n 6= 2

⇒ cn = dn = 0 ifn 6= 0, 1, 2; c0 = −3/4, d0 = 3/2, c1 = −1/28, d1 = 2/7, c2 = 16
√

2
31 = −d2.
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