Tutorial 6 for MATH4220

Rong ZHANG*

February 22, 2018

1. Derive the solution formula for

$$\begin{cases} \partial_t u - k \partial_x^2 u = f(x, t), & x > 0, t > 0 \\ u(x, t = 0) = \phi(x), & x > 0 \\ \partial_x u(x = 0, t) = h(t), & t > 0. \end{cases}$$

Solution: Let w(x,t) = u(x,t) - h(t)x, then w satisfies

$$\begin{cases} \partial_t w - k \partial_x^2 w = f(x,t) - h'(t)x, & x > 0, t > 0 \\ w(x,t=0) = \phi(x) - h(0)x, & x > 0 \\ \partial_x w(x=0,t) = 0, & t > 0. \end{cases}$$

By reflection method, the solution of above problem is given by

$$w(x,t) = \int_{-\infty}^{\infty} \{S(x-y,t) + S(x+y,t)\} \{\phi(y) - h(0)y\} dy$$
$$+ \int_{0}^{t} \int_{-\infty}^{\infty} \{S(x-y,t-s) + S(x+y,t-s)\} \{f(y,s) - h'(s)y\} dy ds.$$

Hence

$$u(x,t) = h(t)x + \int_{-\infty}^{\infty} \{S(x-y,t) + S(x+y,t)\} \{\phi(y) - h(0)y\} dy + \int_{0}^{t} \int_{-\infty}^{\infty} \{S(x-y,t-s) + S(x+y,t-s)\} \{f(y,s) - h'(s)y\} dy ds.$$

2. Derive solution formula for

$$\begin{cases} \partial_t^2 u - c^2 \partial_x^2 u = f(x, t), -\infty < x < \infty, t > 0 \\ u(x, t = 0) = \phi(x), -\infty < x < \infty \\ \partial_t u(x, t = 0) = \psi(x), -\infty < x < \infty \end{cases}$$

by the method using Green's Theorem.

^{*}Any questions on notes, please contact me at rzhang@math.cuhk.edu.hk

Solution: Green's Theorem implies that

$$\iint_{\Delta} f(y,s)dyds = \iint_{\Delta} u_{tt} - c^2 u_{xx}dyds = \iint_{\Delta} \partial_x (-c^2 u_x) - \partial_t (-u_t)dyds$$
$$= \int_{\partial \Delta} -u_t dy - c^2 u_x ds$$

Note that $\Delta = \{(y,s): 0 < s < t, x-c(t-s) < y < x+c(t-s)\}$ and $\partial \Delta = L_1 + L_2 + L_3$ with counterclockwise direction where $L_1 = \{(y,0): x-ct < y < x+ct\}, L_2 = \{(y,s): 0 < s < t, y = x+c(t-s)\}$ and $L_3 = \{(y,s): 0 < s < t, x-c(t-s) = y\}$. Then

$$\int_{L_1} -u_t dy - c^2 u_x ds = \int_{x-ct}^{x+ct} -u_t(y,0) dy = \int_{x-ct}^{x+ct} -\psi(y) dy$$

$$\int_{L_2} -u_t dy - c^2 u_x ds = \int_{L_2} c u_t ds + c u_x dy = c \int_{L_2} u du$$
$$= c(u(x,t) - u(x+ct,0)) = c u(x,t) - c\phi(x+ct)$$

where we have used the facts that dy = -cds on L_2 and $du = u_x dy + u_t ds$.

$$\int_{L_3} -u_t dy - c^2 u_x ds = \int_{L_3} -c u_t ds - c u_x dy = c \int_{L_3} -u du$$
$$= -c(u(x - ct, 0) - u(x, t)) = c u(x, t) - c \phi(x - ct)$$

where we have used the facts that dy = cds on L_3 and $du = u_x dy + u_t ds$. Hence we have

$$u(x,t) = \frac{1}{2} [\phi(x+ct) - \phi(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(y) dy + \frac{1}{2c} \iint_{\Delta} f(y,s) dy ds.$$

3. Derive solution formula for

$$\begin{cases} v_{tt} - c^2 v_{xx} = f(x, t), x > 0, t > 0 \\ v(x, 0) = \phi(x), v_t(x, 0) = \psi(x), x > 0 \\ v(0, t) = h(t), t > 0 \end{cases}$$

with compatibility conditions $\phi(0) = h(0)$ and $\psi(0) = h'(0)$.

Solution: First, consider the following two problems:

$$\begin{cases} v_{tt}^{1} - c^{2}v_{xx}^{1} = f(x,t), x > 0, t > 0 \\ v^{1}(x,0) = \phi(x), v_{t}^{1}(x,0) = \psi(x), x > 0 \\ v^{1}(0,t) = 0, t > 0 \end{cases}$$
 (1)

and

$$\begin{cases} v_{tt}^2 - c^2 v_{xx}^2 = 0, x > 0, t > 0 \\ v^2(x, 0) = 0, v_t^2(x, 0) = 0, x > 0 \\ v^2(0, t) = h(t), t > 0 \end{cases}$$
 (2)

then $v = v^1 + v^2$ is the solution to original inhomogeneous IBVP.

For problem (1), by reflextion method, the solution formula is given by

$$v_{1} = \begin{cases} \frac{1}{2}(\phi(x+ct) + \phi(x-ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(y)dy + \int_{0}^{t} \int_{x-c(t-s)}^{x+c(t-s)} f(y,s)dyds, & x > ct \\ \frac{1}{2}(\phi(x+ct) - \phi(ct-x)) + \frac{1}{2c} \int_{ct-x}^{x+ct} \psi(y)dy \\ + (\int_{0}^{t-\frac{x}{c}} \int_{c(t-s)-x}^{x+c(t-s)} + \int_{t-\frac{x}{c}}^{t} \int_{x-c(t-s)}^{x+c(t-s)}) f(y,s)dyds, & x < ct. \end{cases}$$

For problem (2), the solution has the form of $v_2 = F(x+ct) + G(x-ct)$. The initial conditions imply that for x > 0

$$F(x) + G(x) = 0, F'(x) - G'(x) = 0$$

then F(x) = -G(x) = C with constant C for x > 0. Let $\tilde{F} = F - C$, $\tilde{G} = G + C$, then $\tilde{F}(x) = \tilde{G}(x) = 0$ for x > 0, and $v_2 = F(x + ct) + G(x - ct) = \tilde{F}(x + ct) + \tilde{G}(x - ct)$. While the boundary condition implies that for t > 0

$$\tilde{F}(ct) + \tilde{G}(-ct) = h(t)$$

Notice that $\tilde{F}(x) = 0$ for x > 0, thus $\tilde{G}(-ct) = h(t)$, i.e. $\tilde{G}(x) = h(-\frac{x}{c})$ for x < 0. Hence the general solution to (2) is

$$v_2 = \begin{cases} 0, & x > ct \\ 0 + \tilde{G}(x - ct) = h(t - \frac{x}{c}), & x < ct \end{cases}$$

Therefore,

$$v = \begin{cases} \frac{1}{2}(\phi(x+ct) + \phi(x-ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(y) dy + \iint_{\Delta} f(y,s) dy ds, & x > ct \\ \frac{1}{2}(\phi(x+ct) - \phi(ct-x)) + \frac{1}{2c} \int_{ct-x}^{x+ct} \psi(y) dy + \iint_{D} f(y,s) dy ds + h(t-\frac{x}{c}), & x < ct \end{cases}$$

where Δ and D are characteristic domains as shown in v_1 .