
MATH3720A Ordinary Differential Equations
2017 - 18

Midterm Exam (24 October) - Solutions

1. Find all solutions to the following equations. Show your calculations.

(a) [5 pts] (tety − 6y)y′ = 2t − yety.
(b) [5 pts] y(3) − 7y′′ + 12y′ = 0.

(c) [5 pts] y′ + sin(t)y10 = 0.

(d) [5 pts] y′′y′ + (y′)2 = 0.

Solutions.

(a) This ODE can be written in terms of

(yety − 2t) + (tety − 6y)y′ = 0 ⇒M(t, y) ∶= yety − 2t, N(t, y) ∶= tety − 6y.

Computing

My = ety + tyety, Nt = ety + tyety ⇒My = Nt,

and so the equation is exact. We can now compute for the function Ψ(t, y) by
integrating M with respect to t:

Ψ(t, y) = ∫ M(t, y) dt = ety − t2 + h(y).

Differentiating then gives

N(t, y) = tety + h′(y) ⇒ h′(y) = −6y⇒ h(y) = −3y2,

and so the general solution to the ODE is

Ψ(t, y(t)) = ety(t) − t2 − 3y(t)2 = c, c ∈ R.

(b) Substituting v = y′ yields

v′′ − 7v′ + 12v = 0.

The characteristic equation for this second order ODE is

r2 − 7r + 12 = (r − 4)(r − 3) = 0⇒ r1 = 4, r2 = 3.
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Hence the general solution to the second order ODE is

v(t) = c1e4t + c2e3t,

and upon integrating for y gives

y(t) = c1
4
e4t + c2

3
e3t + c3, c1, c2, c3 ∈ R.

There is also the solution v = y′ = 0 which implies that

y(t) = b, b ∈ R,

but this is already included as part of the general solution.

(c) First note that y = 0 is a solution. If y ≠ 0, then dividing by y10 leads to a
separable equation:

y′

y10
= d

dt
(− 1

9y9
) = − sin(t) ⇒ − 1

9y9
= cos(t) + c⇒ y(t) = −1

(9 cos(t) + c)1/9

for c ∈ R.

(d) Note that we can factorise

y′′y′ + (y′)2 = y′(y′′ + y′) = 0⇒ y′ = 0 or y′′ + y′ = 0.

For the first case we have the solution

y = a,

for constant a ∈ R, and for the second case we have

y′′ + y′ = 0⇒ v′ + v = 0 (v = y′) ⇒ v = ce−t⇒ y = −ce−t + d,

for constants c, d ∈ R.

2. Give examples of the following. Show your reasoning.

(a) [5 pts] An initial value problem

y′ = f(y), y(t0) = y0

where f and f ′(y) are continuous everywhere, but the interval of existence
is not R.

(b) [5 pts] A non-exact first order ODE.

(c) [5 pts] A second order homogeneous ODE for which y1 = e2t and y2 = e−8t
form a fundamental set of solutions.

(d) [5 pts] A pair of functions f and g that are linearly independent, but
their Wronskian W (f, g)[t] is zero for all t.
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Solution.

(a) One example is

y′ = y2, y(0) = 1,

which has f(y) = y2 and f ′(y) = 2y that are continuous for all y ∈ R. However,
as the equation is separable one obtains

y(t) = 1

1 − t →∞ as t→ 1,

and so the interval of existence cannot be R.

(b) Any example would do, e.g.

y′ + y = 0⇒M(t, y) = y, N(t, y) = 1⇒My = 1 ≠ 0 = Nt.

(c) If y1 = e2t and y2 = e−8t, then r1 = 2 and r2 = −8 are the roots of the character-
istic equation, which implies that the characteristic equation is

(r − 2)(r + 8) = r2 + 6r − 16

and so the ODE is

y′′ + 6y′ − 16y = 0.

(d) One example that was encountered in the Homework 2 is

f(t) = t2 ∣t∣ , g(t) = t3.
Then, we have f ′(t) = 3t ∣t∣ and g′(t) = 3t2 so that

W (f, g)[t] = g′(t)f(t) − f ′(t)g(t) = 0 ∀t ∈ R.
However, if

α1t
2 ∣t∣ + α2t

3 = 0 ∀t ∈ R
and plugging in t = 1 and t = −1 we obtain

α1 + α2 = 0, α1 − α2 = 0⇒ α1 = α2 = 0.

Hence f and g are linearly independent but the Wronskian is zero.

3. (a) [4 pts] Find a fundamental set of solutions to the homogeneous ODE

y′′ − 4y′ + 4y = 0.

(b) [8 pts] Use the method of undetermined coefficients to find a particular
solution to

y′′ − 4y′ + 4y = 2 sin(t) + e−2t + t3.

(c) [8 pts] Use the method of variation of parameter to find a particular
solution to

y′′ − 4y′ + 4y = e2t ln(t).

You may use the fact that d
dt

(1
4t

2(2 ln(t) − 1)) = t ln(t).
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Solution.

(a) The characteristic equation for the ODE is

r2 − 4r + 4 = (r − 2)2 = 0⇒ r1 = r2 = 2.

Hence, we consider the pair (e2t, te2t). By standard computation of the Wron-
skian

W (e2t, te2t) = e4t ≠ 0 ∀t ∈ R,

and so (e2t, te2t) forms a fundamental set of solutions to the ODE.

(b) First we find a particular solution to

y′′ − 4y′ + 4y = 2 sin(t).

We try

Y1(t) = A cos(t) +B sin(t),

for undetermined constants A and B. Differentiating the substituting into the
ODE gives

Y ′′
1 − 4Y ′

1 + 4Y1 = cos(t)(3A − 4B) + sin(t)(3B + 4A) = 2 sin(t),

and so

3A − 4B = 0, 3B + 4A = 2⇒ A = 8

25
, B = 6

25
.

Thus,

Y1(t) =
8

25
cos(t) + 6

25
sin(t).

For a particular solution to

y′′ − 4y′ + 4y = e−2t,

since r1, r2 ≠ −2, we can try

Y2(t) = Ae−2t.

Differentiating and substituting leads to

Y ′′
2 − 4Y ′

2 + 4Y2 = 16Ae−2t = e−2t⇒ A = 1

16
,

and so

Y2(t) =
1

16
e−2t.
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For a particular solution to

y′′ − 4y′ + 4y = t3,

we try

Y3(t) = At3 +Bt2 +Ct +D,

so that

Y ′′
3 − 4Y ′

3 + 4Y3 = 4At3 + (4B − 12A)t2 + (6A − 8B + 4C)t + (4D − 4C + 2B) = t3

and so

A = 1

4
, B = 3

4
, C = 9

8
, D = 3

4

⇒ Y3(t) =
1

4
t3 + 3

4
t2 + 9

8
t + 3

4
.

Therefore, a particular solution to the non-homogeneous ODE is

Y (t) = 8

25
cos(t) + 6

25
sin(t) + 1

16
e−2t + 1

4
t3 + 3

4
t2 + 9

8
t + 3

4
.

(c) From (a) the Wronskian is W [t] = e4t. Hence, for y1 = e2t and y2 = te2t a
particular solution to the ODE using the variation of parameter formula is

Y (t) = −y1∫
y2e2t ln(t)
W [t] dt + y2∫

y1e2t ln(t)
W [t] dt.

We compute (neglecting constants of integration)

∫
y1e2t ln(t)
W [t] dt = ∫ ln(t) dt = t(ln(t) − 1),

∫
y2e2t ln(t)
W [t] dt = ∫ t ln(t) dt = 1

4
t2(2 ln(t) − 1).

Hence, the particular solution is

Y (t) = −1

4
e2t(t2(2 ln(t) − 1)) + t2e2t(ln(t) − 1).

4. (a) [10 pts] Let p(t) and q(t) be functions that are continuous for all t ∈ R.
Can y(t) = t2et be a solution to the equation

y′′ + p(t)y′ + q(t)y = 0

satisfied for all t ∈ R? If yes, construct such functions p(t) and q(t). If
no, explain why.

(b) [10 pts] Given that y1(t) = t is a solution to the homogeneous ODE

t2y′′ − t(t + 2)y′ + (t + 2)y = 0, t > 0,

find a solution y2 that is linearly independent to y1, and show that y1 and
y2 form a fundamental set of solutions.
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Solution.

(a) The answer is NO. Consider the IVP

y′′ + p(t)y′ + q(t)y = 0, y(0) = 0, y′(0) = 0.

Then,y∗ = 0 is a solution and as p, q are continuous we see that y∗ = 0 is the
only solution. However, the function y(t) = t2et satisfies

y(0) = 0, y′(0) = 0

but t2et ≠ 0 for all t ∈ R. Hence we have a contradiction. Therefore, y(t) = t2et
cannot be a solution to the ODE for all t ∈ R.

(b) Since t > 0 we can divide by t to obtain the standard form

y′′ − (t + 2)
t

y′ + t + 2

t2
y = 0.

Suppose another solution z exists, then by Abel’s theorem, we know the Wron-
skian is given by

W (y1, z)[t] = ce∫ 1+ 2
t
dt = cett2.

Meanwhile, by the definition of the Wronskian

W (y1, z)[t] = z′y1 − y′1z = tz′ − y2 = ett2.

Solving for the linear first order ODE

z′ − 1

t
z = tet

with the method of integrating factors, where the integrating factor µ(t) is
computed as µ(t) = 1

t , we see that

d

dt

z(t)
t

= et⇒ z(t) = tet + ct, c ∈ R.

Since y1 = t is a solution to the ODE we find that the other solution is

y2(t) = tet.

Computing the Wronksian now gives

W (y1, y2)[t] = t2et ≠ 0 for t > 0,

and so (t, tet) forms a fundamental set of solutions to the ODE.

5. (a) [4 pts] State Abel’s theorem for a n-th order linear ODE.

(b) [8 pts] Show that W (5, sin2(t), cos(2t)) = 0 for all t ∈ R without evaluating
the Wronskian.
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(c) [8 pts] Let p(t), q(t), r(t) be continuous functions on R, suppose the func-
tions y1(t) = t, y2(t) = t2 and y3(t) = t3 are solutions to the linear ODE

y′′′ + p(t)y′′ + q(r)y′ + r(t)y = 0.

Compute the Wronskian W (t, t2, t3), and use your answer to part (a) to
derive the interval I ⊂ R for which {t, t2, t3} can be a fundamental set of
solutions to the above ODE. You may use the following formula

det
⎛
⎜
⎝

a b c
d e f
g h k

⎞
⎟
⎠
= a(ek − hf) − d(bk − hc) + g(bf − ec).

Solution.

(a) Let I be an open interval with continuous functions Pn−1(t), . . . , P0(t). Let
(y1, . . . , yn) be solutions to the homogeneous equation

y(n) + Pn−1(t)y(n−1) + ⋅ ⋅ ⋅ + P1(t)y′ + P0(t)y = 0 ∀t ∈ I.

Then, the Wronskian is given as

W (y1, . . . , yn)[t] = ce−∫ Pn−1(t) dt

for some constant c not depending on t ∈ I.

(b) Using the fact that if y1, y2, y3 are linearly dependent, then the Wronskian
W (y1, y2, y3)[t] is zero, we see that for y1 = 5, y2 = sin2(t), y3 = cos(2t) =
cos2(t) − sin2(t) that

y1 = 10y2 + 5y3,

and so

y1(t) − 10y2(t) − 5y3(t) = 0 ∀t ∈ R.

Therefore, y1, y2, y3 are linearly dependent.

(c) The Wronskian W (t, t2, t3) is given as

W (t, t2, t3) =
RRRRRRRRRRRRRR

t t2 t3

1 2t 3t2

0 2 6t

RRRRRRRRRRRRRR
= 2t3,

which is non-zero for I = (0,∞) or I = (−∞,0). Hence (t, t2, t3) can be a
fundamental set of solutions of the ODE for t ∈ (−∞,0) or for t ∈ (0,∞).

—– End of question paper —–
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