MATH3720A Ordinary Differential Equations
2017 - 18
Midterm Exam (24 October) - Solutions

1. Find all solutions to the following equations. Show your calculations.

(a) [5 pts] (tetv —6y)y’ = 2t — ye'v.

(b) [5 pts] y® - Ty" + 12y’ = 0.

(c) [5 pts] y' +sin(t)y' = 0.

(d) [5 pts] y"y"+ (y')* = 0.
Solutions.

(a) This ODE can be written in terms of

(ye' = 2t) + (te" —6y)y' =0 = M(t,y) =ye” = 2t, N(t,y):=te" - 6y.

Computing

M, =€V +tye’, N,=e"+tye"” = M, =N,

and so the equation is exact. We can now compute for the function W(¢,y) by

integrating M with respect to ¢:

U(t,y) = / M(t,y) dt = e — £ + h(y).
Differentiating then gives
N(t,y) =te + 1 (y) = I'(y) = -6y = h(y) = -3y°,
and so the general solution to the ODE is
U(t,y(t)) =e®D —12 -3y(t)>=c, ceR.
(b) Substituting v =y’ yields
v =Tv" + 120 = 0.
The characteristic equation for this second order ODE is

rP2=Tmr+12=(r-4)(r-3)=0=>r,=4, ry=3.



Hence the general solution to the second order ODE is
v(t) = cre? + e,
and upon integrating for y gives

y(t) = %e‘“ + %Qe?’t +c3, C1,Co,c3€R.
There is also the solution v = ¢’ = 0 which implies that
y(t) =0, beR,
but this is already included as part of the general solution.

(c) First note that y = 0 is a solution. If y # 0, then dividing by y'° leads to a
separable equation:

.
(9cos(t) +c)1/?

y' d 1 . 1
Y0 a(‘g—yg) = —sin(t) = g5 = cos(t) re=y(t) =

for ce R.
(d) Note that we can factorise
vy + () =y (Y +y)=0=y=00ry" +y =0
For the first case we have the solution
Yy=a,
for constant a € R, and for the second case we have

-t

Y'+y=0=>v"+v=0 (v=y)=v=ce'=y=—ce " +d,

for constants ¢, d € R.

2. Give examples of the following. Show your reasoning.

(a) [5 pts] An initial value problem

y'=f(), y(to) =yo
where f and f’(y) are continuous everywhere, but the interval of existence
is not R.
(b) [5 pts] A non-exact first order ODE.

(c) [5 pts] A second order homogeneous ODE for which y; = €% and y, = 78
form a fundamental set of solutions.

(d) [5 pts] A pair of functions f and g that are linearly independent, but
their Wronskian W ( f, g)[t] is zero for all t.



Solution.

(a) One example is

y =vy* y(0)=1,

which has f(y) = y? and f'(y) = 2y that are continuous for all y € R. However,
as the equation is separable one obtains

1
t)=———>o0ast—>1,
y(t) T3
and so the interval of existence cannot be R.

(b) Any example would do, e.g.
y+y=0=>M(t,y)=y, N({t,y)=1=M,=1+0=N,.
(c) If y; = e? and yp = ¥ then r; = 2 and ry = -8 are the roots of the character-
istic equation, which implies that the characteristic equation is
(r-2)(r+8)=r*+6r-16
and so the ODE is
y" + 6y — 16y = 0.

(d) Ome example that was encountered in the Homework 2 is
fay=tp, g@) =t
Then, we have f/(t) = 3t|t| and ¢'(t) = 3t% so that
W(f,9)ltl=g' &) f(t) - f'(t)g(t)=0 VieR.
However, if
at? [t +aat* =0 VteR
and plugging in ¢ =1 and ¢ = -1 we obtain
a1+as=0, a1—-as=0=>a3=ay=0.
Hence f and ¢ are linearly independent but the Wronskian is zero.
3. (a) [4 pts] Find a fundamental set of solutions to the homogeneous ODE
y' =4y +4y =0.

(b) [8 pts] Use the method of undetermined coefficients to find a particular
solution to

2t 3

y' =4y’ + 4y = 2sin(t) + e + 17,

(c) [8 pts] Use the method of variation of parameter to find a particular
solution to

y" — 4y + 4y = e* In(t).
You may use the fact that % (}th(an(t) - 1)) =tIn(t).



Solution.

(a)

The characteristic equation for the ODE is
r2—dr+4=(r-2)2=0=>r=ry=2,

Hence, we consider the pair (e, te?"). By standard computation of the Wron-
skian

W(e* te*)=e* 0 VteR,
and so (e%,te?!) forms a fundamental set of solutions to the ODE.

First we find a particular solution to
y" -4y’ + 4y = 2sin(t).
We try
Yi1(t) = Acos(t) + Bsin(t),

for undetermined constants A and B. Differentiating the substituting into the
ODE gives

Y —4Y] + 4Y] = cos(t)(3A - 4B) +sin(t)(3B + 4A) = 2sin(t),

and so

SA-4B =0, 3B+4A-2=A-> p-S
25 25

Thus,

Yi(t) = % cos(t) + 2—65 sin(t).

For a particular solution to

y' -y + Ay = e,

since rq,79 # —2, we can try
Ya(t) = Ae™™.

Differentiating and substituting leads to

1
Yy —4Y) +4Y, =164 = = A= 6

and so

1
ng(t) = Ee‘”.



For a particular solution to
Y — Ay + Ay =13,
we try
Y3(t) = At® + Bt? + Ct + D,
so that
Yy —4Y] +4Y5 = 4At? + (4B - 12A)t* + (6A -8B +4C)t + (4D - 4C + 2B) =t

and so
1
Al gl ol gl
4 4 8 4
1 3 9 3
Ya(t) = =t>+ =t*+ St + =
= Yl =gt gt gteg
Therefore, a particular solution to the non-homogeneous ODE is

8 6 1 1 3 9 3
Y(t) = % COS(t) + % Sll’l(t) + ]_—66722t + Zt?) + Zt2 + ét + Z_l

(c) From (a) the Wronskian is W([t] = e*. Hence, for y; = ¢* and y, = te? a
particular solution to the ODE using the variation of parameter formula is

Y(t)z—ylf%aa)dmygf%ﬁﬂdt.

We compute (neglecting constants of integration)

yie*In(t) -
/W—[t]dt_fln(t) dt = t(In(t) - 1),
/ WW—ESH]@) dt = [tln(t) dt = it2(2ln(t) -1).

Hence, the particular solution is
1
Y (t) = —Zezt(t2(21n(t) -1)) +t%e*(In(t) - 1).

4. (a) [10 pts] Let p(t) and ¢(t) be functions that are continuous for all ¢ € R.
Can y(t) = t%¢! be a solution to the equation

y"+pt)y +q(t)y=0

satisfied for all ¢t € R? If yes, construct such functions p(t) and ¢(t). If
no, explain why.

(b) [10 pts] Given that y;(t) =t is a solution to the homogeneous ODE
2y —t(t+2)y +(t+2)y=0, t>0,

find a solution g, that is linearly independent to y;, and show that y; and
yo form a fundamental set of solutions.



Solution.

(a)

D.

The answer is NO. Counsider the IVP

y"+p(t)y +q(t)y=0, y(0)=0, ¥'(0)=0.

Then,y, = 0 is a solution and as p, ¢ are continuous we see that y, = 0 is the
only solution. However, the function y(t) = t?e! satisfies

y(0)=0, ¥'(0)=0

but t2et # 0 for all ¢t € R. Hence we have a contradiction. Therefore, y(t) = t2et
cannot be a solution to the ODE for all ¢ € R.

Since ¢t > 0 we can divide by ¢ to obtain the standard form

y,,_(t+2) ,+t+2

/ 2 v=0

Suppose another solution z exists, then by Abel’s theorem, we know the Wron-
skian is given by

Wy, 2)[t] = ce! L dt = cety2,
Meanwhile, by the definition of the Wronskian
W (ys, 2)[t] = 2'ys —y12 = t2" —yp = €'t%.

Solving for the linear first order ODE
1

2 -~z =te
t

with the method of integrating factors, where the integrating factor u(t) is
computed as p(t) = 1, we see that

(1)

- =e' = z(t)=te' +ct, ceR.

Since y; =t is a solution to the ODE we find that the other solution is
yo(t) = te'.
Computing the Wronksian now gives
W (y1,y2)[t] = t%e' #0 for t > 0,
and so (t,te?) forms a fundamental set of solutions to the ODE.

(a) [4 pts] State Abel’s theorem for a n-th order linear ODE.

(b) [8 pts] Show that W (5,sin?(t), cos(2t)) = 0 for all t € R without evaluating
the Wronskian.



(c) [8 pts] Let p(t),q(t),r(t) be continuous functions on R, suppose the func-
tions y1(t) = ¢, y2(t) = t? and y3(t) = t3 are solutions to the linear ODE

y" +p(t)y" +q(r)y +r(t)y =0.

Compute the Wronskian W (t,t2,¢3), and use your answer to part (a) to
derive the interval I c R for which {¢,¢2,¢3} can be a fundamental set of
solutions to the above ODE. You may use the following formula

a b c
det| d e f |=a(ek-hf)—-d(bk-hc)+g(bf —ec).
g h k
Solution.
(a) Let I be an open interval with continuous functions P,_1(¢),..., Py(t). Let
(y1,---,Yn) be solutions to the homogeneous equation

y™ 4+ P )y Y 4+ Py + Po()y=0 Vtel.
Then, the Wronskian is given as
Wy, yn)[t] = ce”/ PO
for some constant ¢ not depending on ¢ € I.

(b) Using the fact that if y;,ys,ys are linearly dependent, then the Wronskian
W (y1,y2,y3)[t] is zero, we see that for y; = 5, y, = sin®(t), y3 = cos(2t) =
cos?(t) —sin®(t) that

Y1 = 10y2 + dys,
and so
y1 () — 10yo(t) = 5ys(t) =0 VteR.
Therefore, 1, ys2,y3 are linearly dependent.

(c) The Wronskian W (¢,t2,t3) is given as

t o2 3
W(t,t2t3) =1 2t 3t2 | =2t3,
0 2 6t

which is non-zero for I = (0,00) or I = (-00,0). Hence (¢,t2,¢3) can be a
fundamental set of solutions of the ODE for ¢ € (—c0,0) or for ¢ € (0, c0).

—— End of question paper —



