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1 Introduction

1.1 Motivation for ODEs

Many phenomena in the world around us:

• growth of plants and animals;

• movement of people, objects and goods (in an economy);

• value of stock prices;

• flow of fluids/gases, melting of ice;

are “dynamic” in nature. We can associate “dynamic” with “change (in time)”,
and to model these changes with mathematics, we can use equations of the form:

rate of change of a quantity = source − depletion .

As the derivative of a function provides the rate at which it is changing with
respect to its variable, the equations we use to model change will involve derivatives,
and we call these equations as differential equations.

We begin with a definition.

Definition 1.1. A differential equation is an equation that involves the derivatives
of an unknown function.

Notation: Let x = x(t) be a function of t. For any n ∈ N, we write

x(n) = d
nx

dtn
, and often x′ = x(1), x′′ = x(2).

The main subject of study in this course is the class of differential equations called
“Ordinary differential equations” (ODEs), and a problem involving ODEs has
5 components:

(1) the independent variable - usually time, denoted by t;
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(2) the dependent variable (also the quantity of interest) - such as distance,
price, number of people, denoted by y;

(3) the equation - specifying how the quantity of interest changes with respect to
the independent variable;

(4) the interval of definition - denoted by I ⊂ R, which is the range for which
the solution to the ODE is defined;

(5) the initial conditions - specific conditions related to the particular problem
we want to model.

Example 1.1 (Motion of a falling object). Consider an object falling in the at-
mosphere with mass m > 0. We are interested in the velocity v of the object
as time progresses. So we think of v as a function of t and derive an equation
for the rate of change dv

dt . A crucial idea is the balances of forces - which is
Newton’s third law. There are two (opposing) forces acting on the object as it
falls:

(1) Gravity exerts a (downwards) force Fg =mg, where g is the gravitational con-
stant;

(2) Movement through the air generates air resistance/drag forces, which we

take as proportional to the velocity. This gives a (upwards) force Fa = γv,
where γ > 0 is the drag coefficient.

The net force pointing downwards is therefore

F = Fg − Fa =mg − γv.

Using Newton’s second law - which relates net force with the product of mass and
acceleration, and recalling acceleration is the rate of change of velocity with respect
to time, we are led to

mg − γv = F =ma =mdv

dt

⇒ m
dv

dt
=mg − γv .

In the above, we see that

1. the independent variable is time t;

2. the dependence variable is the velocity v;

3. the equation is mv′ =mg − γv;

4. the interval of definition can be taken as I = [0,∞) - modelling the motion of
the object from time t = 0 onwards;

5. as initial condition we can take v(0) = 0.
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Example 1.2 (Population dynamics). Let us model the growth of a herd of cows.
We are interested in the number of cows after a certain period of time. Setting t as
the independent variable and p(t) - the number of cows - as the dependent variable,
we now derive an ODE for p(t). Note that for physical reasons, only the case p(t) ≥ 0
makes sense.

The modelling assumptions we will make are the following:

• the rate at which population changes is proportional to the population at
present time - leading to the equation

dp

dt
= h(p)p,

for some function h;

• when p(t) is small, h(p(t)) is positive (less competition, more food for every-
one);

• when p(t) is large, h(p(t)) is negative (more competition, less food for every-
one);

• the function h(p) should decrease as p grows larger.

To obtain the ODE we simply need to find a suitable function for h. One simple
choice is

h(p) = r − ap,

where r, a > 0 are the reproduction and elimination rates, respectively. Setting

K ∶= r
a
,

which is also known as the carrying capacity, the ODE for p now reads as

dp

dt
= (r − ap)p = rp(1 − p

K
) .

The above equation is also called the Logistic equation. Once again, we are in-
terested in the values of p from t = 0 onwards, so we set I = [0,∞). As for initial
condition, we set p(0) = p0, where p0 is the initial number of cows the farmer has.

Example 1.3 (Motion of a pendulum). An object of mass m > 0 is attached to a
rigid rod of length L and affixed to the ceiling. The object is allowed to swing in one
direction and its motion traces out an arc. We are interested at how the angle θ
between the rod and the centreline changes in time as the pendulum swings. Again
we think of θ as a function of t and derive an equation for dθ

dt . The key idea is
also the balance of forces. Note that in the weight of the object W = mg exerts
two forces that are perpendicular to each other. A tangential force Fs = mg sin θ
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that drives the motion of the pendulum, and a normal force Fc = mg cos θ that is
perpendicular and does not contribute to the motion.

By Newton’s second law, taking into account that the tangential force Fs points
in the opposite direction to the motion of the pendulum, leads to

mg sin θ = Fs = −ma⇒ a = −g sin θ.

Meanwhile, the velocity v of the object is given as v = Ldθ
dt , and the acceleration a = dv

dt

can be computed as a = Ld2v
dt2 . Altogether we now have the pendulum equation

L
d2θ

dt2
= −g sin θ .

For the interval of definition, we again consider I = [0,∞), and for the initial
conditions we have to prescribe an initial angle (position of the pendulum) θ(0) = θ0,
and an initial velocity dθ

dt (0) =
v0
L (how hard you initially swing the pendulum).

In all of the examples above, we have to set an initial condition(s) for the ODE.
What is the reason for this? If we consider the simple ODE example:

Solve
dy

dt
= t.

Integration gives

y(t) = 1

2
t2 + c ,

where c ∈ R is a constant of integration. We call the above formula the general solution
to the ODE.

Since c ∈ R is an arbitrary constant, we have in fact obtained an infinite number
of solutions to the ODE. The question becomes:

Which solution should I take as the “correct one”?

To remove this ambiguity, we prescribe an initial condition to fix the constant c:
Suppose we set y(t0) = y0 for some given constants t0 ∈ I and y0 ∈ R, then it turns
out that

y0 =
1

2
t20 + c⇒ c = y0 −

1

2
t20⇒ y(t) = 1

2
(t2 − t20) + y0 .

We call the above formula a particular solution to the ODE.
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Rule of thumb - The number of initial conditions needed is the same as the
highest number of derivatives appearing in the ODE.

Definition 1.2. An ordinary differential equation is an equation involving ONE
independent variable t ∈ I and ONE dependent variable y of the form

F (t, y, y′, y′′, . . . , y(n)) = 0.

Given constants t0, t1, . . . , tn−1 ∈ I and y0, y1, . . . , yn−1 ∈ R, we call

⎧⎪⎪⎨⎪⎪⎩

F (t, y, y′, y′′, . . . , y(n)) = 0,

y(t0) = y0, dy
dt (t1) = y1, . . . ,

d(n−1)y
dtn−1 (tn−1) = yn−1,

an initial value problem (IVP).

Definition 1.3.

(a) The order of an ODE is the highest order of derivative that appears.

(b) An ODE F (t, y, y′, . . . , y(n)) = 0 is linear if F is a linear function of

y, dydt , . . . ,
dny
dtn . Otherwise, it is a non-linear ODE. The general linear ODE

of order n is

a0(t)y(n)(t) + a1(t)y(n−1)(t) + ⋅ ⋅ ⋅ + an(t)y(t) = f(t),

for some given functions a0, a1, . . . , an and f .

(c) An ODE is called autonomous if the independent variable does not appear
explicitly (only in the derivatives). Otherwise it is a non-autonomous ODE.

Looking at the ODEs we have studied so far:

ODE Order Linear ? Autonomous ?

mv′ =mg − γv 1 3 3

p′ = rp(1 − p/K) 1 7 3

Lθ′′ = −g sin θ 2 7 3

y′ = t 1 3 7

While one expects the solution y to an ODE is a function depending on t, there
is also a special class of solutions worth looking at:

Definition 1.4. For a first order ODE y′ = F (t, y), we say that a function y∗ is an
equilibrium solution (or a stationary solution) to the ODE if

F (t, y∗) = 0 ∀t ∈ I.
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Note that the equilibrium solution y∗ does not depend on t, i.e., dy∗
dt = 0, and so

it automatically satisfies the ODE.

Example 1.4.

1. For the motion of the falling object, the ODE is mv′ = mg − γv = F (t, v). So
if F (t, v∗) = 0 for some function v∗, we compute to see that

0 = F (t, v∗) =mg − γv∗⇒ v∗ =
mg

γ
(related to the terminal velocity).

2. For the population dynamics, the ODE is p′ = rp(1 − p/K) = F (t, p). So if
F (t, p∗) = 0 for some function p∗, we have

0 = F (t, p∗) = rp∗(1 − p∗/K)⇒ p∗ = 0 or p∗ =K.

Interpretation: if p∗ = 0, then we have no cows left (extinction), and if p∗ =K >
0, then the number of cows is equal to the carrying capacity - the maximum
number that is supported by the environment.

3. For the pendulum (although it is a second order ODE), suppose θ∗ is a function
satisfying F (t, θ∗) = −g sin θ∗ = 0. Then

0 = −g sin θ∗⇒ θ∗ = 0,

and the interpretation is that the pendulum lies on the centreline.

1.2 Goal of this course

Given an ODE

⎧⎪⎪⎨⎪⎪⎩

F (t, y, y′, . . . , y(n)) = 0,

y(t0) = y0, dydy(t1) = y1, . . . ,
d(n−1)y
dtn−1 (tn−1) = yn−1,

(⋆)

we attempt to answer the following questions:

1. can we find an explicit formula for the solution y(t)?

2. if not, can we prove that there exists a solution y(t)? If a solution exists, is
it a unique solution?

3. if a solution y(t) exists, what is its behaviour as t varies?

4. are there stationary solutions to (⋆)?

2 First order equations

2.1 Two linear ODE example

We begin our study with two examples of first order linear ODEs.
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2.1.1 Example 1

For given real constants a, b, t0, y0, solve

⎧⎪⎪⎨⎪⎪⎩

dy
dt = ay + b,
y(t0) = y0.

This is a linear and autonomous ODE. Let us consider the case a = 0. Then the
ODE becomes

y′ = b, y(t0) = y0.

Integrating yields the general solution

y(t) = bt + c, c ∈ R,

and the initial condition gives the particular solution

y(t) = y0 + b(t − t0) .

For the case a ≠ 0, we rearrange the ODE into another form:

y′ = ay + b = a(y + b/a)⇒ 1

y + b
a

dy

dt
= a.

If there exists a function H(y) such that H ′(y) = (y+b/a)−1, then the ODE becomes
(via the Chain rule)

H ′(y)dy
dt

= d

dt
H(y(t)) = a.

It turns out that

H(y) = ln(y + b/a),

and so we have

ln(y(t) + b/a) = at + c, c ∈ R.

Taking exponential then leads to the general solution

y(t) = κ exp(at) − b
a
, κ ∶= exp(c).

Using the initial condition y(t0) = y0 we obtain the particular solution

y(t) = (y0 + b/a) exp(a(t − t0)) −
b

a
.

In summary we find that

y(t) =
⎧⎪⎪⎨⎪⎪⎩

y0 + b(t − t0) for a = 0,

(y0 + b/a) exp(a(t − t0)) − b
a for a ≠ 0.

This example shows that the explicit formula for the solution can depend on the
values of the given coefficients. Always keep this in mind before starting to solve
the ODE.

7



2.1.2 Example 2

For a given function p(t), find the general solution to

dy

dt
= p(t)y.

Note that y(t) ≡ 0 is one solution! Suppose that y(t∗) ≠ 0 for some t∗ ∈ I, then we
can rearrange the ODE into the form

1

y

dy

dt
= p(t)⇒ d

dt
ln(y(t)) = p(t).

Integrating yields

ln(y(t)) = ∫ p(t) dt + c, c ∈ R,

and taking exponential gives the general solution

y(t) = κ exp(∫ p(t) dt) , κ ∶= exp(c).

Remark 2.1. In the above examples, it should have been

ln ∣y(t)∣ = ∫ p(t) dt + c.

Once we take the exponential we find that

∣y(t)∣ = exp(∫ p(t) dt) exp(c).

Setting

κ =
⎧⎪⎪⎨⎪⎪⎩

exp(c) if y(t) > 0,

− exp(c) if y(t) < 0,
⇒ y(t) = κ exp(∫ p(t) dt) .

The sign of the constant κ does not matter once we use the initial condition to
determine its value.

2.2 Linear first order equations - method of integrating fac-
tors

In the above Example 2, we obtain that the general solution to the ODE

dy

dt
= p(t)y

is

y(t) = κ exp(∫ p(t) dt) ,
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for some arbitrary non-negative constant κ. We now study the general linear first
order ODE:

⎧⎪⎪⎨⎪⎪⎩

dy
dt = p(t)y + q(t),
y(t0) = y0

(2.1)

for some given functions p(t), q(t) and constants t0 and y0. One example is the
equation for the motion of the falling object: mv′ =mg −γv, where we set y = v, p =
−γ/m and q = g. The method we use is called the method of integrating factors.

Idea: Multiply the ODE (2.1) by a function µ(t), leading to

µ(t)dy
dt

− µ(t)p(t)y(t) = µ(t)q(t). (2.2)

Suppose

µ(t)dy
dt

− µ(t)p(t)y(t) = d

dt
(µ(t)y(t)) , (2.3)

then, the multiplied ODE (2.2) becomes

d

dt
(µ(t)y(t)) = µ(t)q(t)⇒ µ(t)y(t) = ∫ µ(t)q(t) dt + c , c ∈ R. (2.4)

If in addition, µ(t) is non-zero, we can divide by µ(t) and end up with the general
solution

y(t) = 1

µ(t) [∫ µ(t)q(t) dt + c] . (2.5)

Definition 2.1. If such a function µ(t) exists satisfying (2.3), then we call µ(t) the
integrating factor.

But does such a function µ(t) exists? If it doesn’t then this is a useless method.
What is the equation satisfied by µ? From (2.3) we see that

µ(t)y′(t) − µ(t)p(t)y(t) = d

dt
(µy) = µ′(t)y(t) + µ(t)y′(t)

⇒ y(t) (dµ
dt

+ p(t)µ(t)) = 0.

The above equation is satisfied if y(t) = 0 or µ′(t) + p(t)µ(t) = 0. The first case
y(t) = 0 is not desirable, since if the initial condition y0 is non-zero, we have a
contradiction. Therefore, we consider the second case and obtain the equation

dµ

dt
= −p(t)µ (2.6)
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as the ODE for µ. But this type of equation has been encountered before. From
Example 2, we see that the general solution is

µ(t) = κ exp(−∫ p(t) dt) , κ ∈ R≥0. (2.7)

Take note of the minus sign! The question is what should we take the value of
κ to be? Let us first substitute the formula (2.7) into the multiplied ODE (2.2):

κ exp(−∫ p(t) dt) dy
dt

− κ exp(−∫ p(t) dt)p(t)y(t) = κ exp(−∫ p(t) dt) q(t)

⇒ κ
d

dt
(e− ∫ p(t) dty(t)) = κe− ∫ p(t) dtq(t).

It turns out that κ appears on both sides of the equation, and thus we can cancel
out κ. In effect, we can choose κ = 1, which we will do so from now on. This implies
that we take the integrating factor µ(t) to be

µ(t) = exp(−∫ p(t) dt) , (2.8)

and the general solution y(t) to the ODE y′ = p(t)y + q(t) is given as

y(t) = e∫ p(t) dt [∫ e− ∫ p(t) dtq(t) dt + c] . (2.9)

The particular solution and the constant c can be computed with the initial condition
y(t0) = y0, which we will not do here.

Example 2.1. Derive the general solution to the ODE

t
dy

dt
+ 2y = 4t2.

Step 1. Write the ODE in the form y′ = p(t)y + q(t) and identify p and q:

t
dy

dt
+ 2y = 4t2⇒ dy

dt
= −2

t
y + 4t⇒ p(t) = −2

t
, q(t) = 4t.

Step 2. Compute the integrating factor µ(t):

µ(t) = exp(−∫ p(t) dt) = exp(∫
2

t
dt) = t2.

Step 3. Plug into the formula (2.9)

y(t) = 1

t2
[∫ t2 × 4t dt + c] = t2 + c

t2
.
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Remark 2.2. The general solution y(t) = t2+ c
t2 , for c ≠ 0, is not defined at the point

t = 0. So far in the course, we have not really discussed the interval of definition
I ⊂ R. In this case, the general solution is defined only for t ∈ (−∞,0) ∪ (0,∞) =
R ∖ {0}. If the graph of y(t) is sketched we see that the graph has two parts, one to
the left of the y-axis and one to the right of the y-axis. Which part we take depends
on the initial condition.

If we consider an initial condition y(t0) = y0, where t0 > 0, then we choose the
right part - since we can determine the arbitrary constant c in the general solution
only in the interval (0,∞). In this case the interval of definition is I = (0,∞).
Similarly, if t0 < 0, then we choose the left part as the solution, with I = (−∞,0).
This example serves as a reminder that the solution y(t) to ODEs may not be defined
for all values of t ∈ R, and the initial condition plays a role in determining the
interval of definition.
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