
MATH3720A Ordinary Differential Equations
2017 - 18 Term 1

Homework Assignment 2

Please hand in your assignment to the assignment boxes on 2/F LSB by 3pm on
Friday 13th October.

1. Given an ODE of the form M(t, y) +N(t, y)y′ = 0, where My ≠ Nt (so that
the ODE is not exact), consider a function µ depending on the variable z =

f(t)g(y), i.e., µ(z) = µ[f(t)g(y)].

(a) (2 point) What is the condition to be satisfied if

µ(f(t)g(y))M(t, y) + µ(f(t)g(y))N(t, y)y′ = 0

is to be an exact equation? Write down the equation satisfied by µ.

(b) (3 points) For the ODE

(
sin y

y
− 3e−t sin t) + (

cos y + 3e−t cos t

y
) y′ = 0,

show that if z = yet, i.e., f(t) = et and g(y) = y, then the integrating
factor µ(z) = µ(yet) satisfies the ODE

µ′ =
µ

z
.

2. Consider the differential inequality

dz

dt
≤ p(t)z,

where p(t) is a continuous function on I ⊂ R. Let P (t) be the anti-derivative
of p(t), i.e., P ′(t) = p(t).

(a) (3 points) Following the method of integrating factors, find a non-negative
function µ(t) so that after multiplying the inequality with µ(t) one gets

d

dt
F (t, z(t)) ≤ 0 (1)

for some function F . Identify the function F . Then, integrating both
sides of (1) from t0 to s, show the following inequality can be derived:

z(s) ≤ z(t0)e
P (s)−P (t0).

(b) Given fixed constants α,β, γ, δ with rectangle R ∶= (α,β) × (γ, δ). Let
y1(t) and y2(t) be two solutions to the IVP

y′ = f(t, y), y(0) = y0,

where 0 ∈ (α,β), y0 ∈ (γ, δ), and f is continuous in R.
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(i) (2 points) Write down the IVP satisfied by the difference z(t) =

y1(t) − y2(t), and hence show that

d

dt
∣z∣

2
= 2z(f(t, y1(t)) − f(t, y2(t))).

(ii) (1 point) Under the assumption that the function f satisfies

∣f(t, y1) − f(t, y2)∣ ≤ L ∣y1 − y2∣

for some positive constant L, derive the differential inequality

d

dt
∣z∣

2
≤ 2L ∣z∣

2
.

(iii) (3 points) Solve the differential inequality and deduce that z(t) = 0
for all t ≥ 0. What is the consequence for the solutions y1 and y2?

3. (a) (3 points) Let f and g be two continuous functions defined on R. Suppose
the Wronskian W (f, g)[t] is non-zero for some t ∈ I. Show that f and g
are linearly independent.

(b) It turns out that the converse (Linear independence ⇒ Wronskian non-
zero) is not true for general functions that are not the solution to some
ODE.

(i) (4 points) Compute the derivative of the function f(t) = t2 ∣t∣ for all
t ∈ R.

(ii) (3 points) Show that the Wronskian of f(t) = t2 ∣t∣ and g(t) = t3 is
zero.

(iii) (3 points) Show that f(t) = t2 ∣t∣ and g(t) = t3 are linearly indepen-
dent.

(c) (4 points) Given a second order linear homogeneous ODE

y′′ + p(t)y′ + q(t)y = 0 (2)

with continuous coefficients p and q. Let y1(t) be a non-zero solution
to the ODE. Use Abel’s theorem to show that if y2 is a function with
W (y1, y2)[t] ≠ 0 for all t ∈ I and also satisfies the ODE

y1(t)
dy2
dt

− y′1(t)y2 = ce
−∫ p(t) dt,

where c is the constant from Abel’s theorem, then y2 is a solution to the
ODE (2).

4. Consider two first order linear ODEs that are coupled :

u′ = v, v′ = −p(t)v − q(t)u

for continuous functions p(t) and q(t) that are bounded, i.e., ∣p(t)∣ ≤ P and
∣q(t)∣ ≤ Q for all t ∈ R, and initial conditions

u(0) = u0, v(0) = v0.
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(a) (2 points) Show that

d

dt
(u2 + v2) = 2(1 − q(t))uv − 2p(t)v2.

(b) (2 points) Using the (Young’s) inequality ∣uv∣ ≤ 1
2(u

2 + v2), show that

d

dt
(u2 + v2) ≤ (1 +Q + 2P )(u2 + v2).

(c) (6 points) Using the results of Question 2 (b), show that for t ≥ 0,

u2(t) + v2(t) ≤ (u20 + v
2
0)e
(1+Q+2P )t,

and argue that there cannot exists a t∗ ∈ (0,∞) such that u2(t) → ∞ as
t→ t∗. Use this result to show that any solution y to the IVP

y′′ + p(t)y′ + q(t)y = 0, y(0) = y0, y′(0) = y1,

with bounded continuous coefficients p(t) and q(t) cannot blow up in
finite time.

5. (a) (3 points) The motion of a pendulum can be described by a second or-
der ODE for the angle θ that the pendulum makes with the downward
vertical. For small swing motions, the ODE is given as

θ′′ = −w2θ,

for some constant w > 0. Show that the general solution to the above
ODE can be written as

θ(t) =M cos(wt − φ) (3)

for some constants M and φ. [Hint use the double angle formula]

(b) (3 points) We now add damping (i.e., friction/resistance) to the pendu-
lum, leading to the new ODE

θ′′ + λθ′ +w2θ = 0, (4)

for some constant λ > 0. Obtain the general solutions and comment on
the behaviour as t→∞ for each of the following cases:

(i) Over-damping λ2 > 4w2.

(ii) Critical damping λ2 = 4w2.

(iii) Under-damping λ2 < 4w2.

From now on we will always denote by the value λc ∶= 2w as the critical
value of damping associated to the ODE (4).

(c) Oscillations on a foot bridge can also be modelled with the same type
of ODE. As people walk on the bridge their footsteps create small wob-
bling. Denote by x the deviation of a point on the bridge from its normal
position, and assume x satisfies the ODE (when there are no pedestrians)

Mx′′ + kx′ + hx = 0.
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(i) (1 point) For the values M = 4 × 105 kg, k = 5 × 104 kg/s and h =

107 kg/s2, show that the level of damping here is about 1% of the
critical level.

(ii) (2 points) If there are N pedestrians on the bridge, they exert a
forcing and leads to the new ODE

Mx′′ + kx′ + hx = 300Nx′. (5)

Find the critical number of pedestrians N0 (in terms of k, h,M) such
that if there are more than N0 pedestrians, then the bridge is no
longer damped.

(iii) (2 points) Show that with N = 200 pedestrians, and the values M =

4× 105 kg, k = 5× 104 kg/s and h = 107 kg/s2, the general solution to
the ODE (5) contains oscillations with frequency approximately 0.8
hertz (oscillations per second) and amplitude growing like et/80. [For
a function of the form

f(t) = A cos(µt − φ),

the amplitude is the value A and the frequency is µ
2π .]

(d) Given a system consisting of a spring attached to an object mass, the
displacement u of the spring (difference between the lengths before and
after the object is hung onto the spring) satisfies the IVP

mu′′ + ku = 0, u(0) = a, u′(0) = b.

(i) (1 point) Define the kinetic energy K(t) = 1
2m(u′(t))2 and the po-

tential energy P (t) = 1
2k(u(t))

2, show that the total energy (kinetic
+ potential) is conserved throughout time, i.e.,

K(t) + P (t) =K(0) + P (0) ∀t ≥ 0.

[Hint: Conservation of energy is equivalent to d
dt(K(t) + P (t)) = 0.]

(ii) (3 point) Suppose we add damping to the system, leading to

mu′′ + λu′ + ku = 0, λ > 0.

Show that one obtains the inequality

d

dt
(K(t) + P (t)) ≤ 0.

[Hint: compute d
dt(K(t) + P (t))] What conclusions can you derive

about the change in the total energy if u is not constant in time?
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