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6 Geometric approach for nonlinear equations

In all of our study, we have mainly focused on linear equations to compute explicit
solutions. For nonlinear equations we have been restricted to techniques for separa-
ble equations, exact equations and Bernoulli equations. For nonlinear equations

y(n) = F (t, y, y′, . . . , y(n−1)),

or nonlinear systems of equations

y⃗′(t) = P(t, y⃗(t)),

we can only say something about existence and uniqueness of solutions for small
times if F or P are continuous with continuous derivatives. Unfortunately, explicit
formulae for solutions are usually not available, but we can use geometric methods to
deduce more information about the solutions. This will be the focus of this section.

6.1 First order equations

Given a first order nonlinear ODE

y′(t) = f(t, y(t)),

for continuous functions F and ∂F
∂y , we know that there is exactly one solution to

the IVP when initial conditions are given. Furthermore we can plot the graph of t
vs y using the equation.

t

y

(t, y(t))
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At each point (t, y(t)) we can draw a line segment with the slope f(t, y(t)). This
gives a direction field for the ODE.

Example 6.1. Consider the first order ODE

y′ = f(y) = 2 − y.

As f does not depend on t, the slopes of the line segments at a fixed y-coordinate
are all the same. We plot the direction field in Fig. 1. Notice that the line segments

Figure 1: Direction field of y′ = 2 − y.

have zero slope whenever the points lie on the line {y = 2}. Similarly, for the first
order ODE

y′ = y − 2,

we have the direction field Fig. 2.

Figure 2: Direction field of y′ = y − 2.
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Now imagine affixing an arrow at the end of each line segment, this gives a vector
field in the t − y plane. Putting a particle inside this vector field at initial position
(t0, y0) traces out a trajectory {(t, y(t)) ∶ t ∈ I} for the solution to the ODE.

In the first example y′ = 2−y, all trajectories will go to the line {y = 2} as t→∞,
while for the second example y′ = y−2, if trajectories start with initial position y0 = 2,
then the trajectories will stay on the line {y = 2} as t→∞. However, if y0 > 2, then
the trajectories will move up and away from {y = 2}, and correspondingly in y0 < 2,
the trajectories will move down and away from {y = 2}.

In the above examples, the line {y = 2} is what we will call equilibrium/stationary
solutions to the ODE, as the values of y do not change as time progresses.

Definition 6.1 (Critical point and stationary solutions). Given a continuous func-
tion f(t, y), suppose y∗ ∈ R is a point such that

f(t, y∗) = 0 ∀t ∈ I ,

then y∗ is a critical point of f . We call the constant function

φ(t) = y∗ ∀t ∈ I

a stationary solution to the ODE y′ = f(t, y).

Aside from the direction fields, another useful graphic for nonlinear autonomous
ODEs

y′ = f(y)

is the graph y vs f(y).

Example 6.2. Recall the Logistic equation: for positive constants r and K,

y′ = f(y) = ry (1 −
y

K
)

for population dynamics. It is easy to see that y = 0 and y = K are stationary
solutions, and if y is not equal to 0 or K, then

y(t) =
y0K

y0 + (K − y0)e−rt
for y(0) = y0.

Hence, we can deduce that for nonnegative initial values y0,

y(t) →K as t→∞ if y0 > 0, y(t) = 0 for all t > 0 if y0 = 0.

We can plot the direction field for the case r = 1 and K = 4, and observe in Fig. 3
below that the line segments with y-coordinate equal to 0 or 4 have zero slope. We
now plot the graph y vs f(y) in Fig. 4, which is a parabola that intersects the
horizontal axis at two points y = 0 and y =K. The points that intersect the horizontal
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Figure 3: Direction field for the Logistic equation with r = 1 and K = 4.

axis are the stationary solutions. From this plot we can also deduce some behaviour
of the solution to the ODE. Suppose we start with an initial condition x0 in between
0 and K, then f(x0) is positive and so the solution y will increase in value, until it
reaches y = K where the derivative y′ is zero. Similarly, if we start with an initial
condition x1 > K, then f(x1) is negative. Hence, the solution y will decrease in
value, until it reaches y =K. Similarly, if we start with an initial value x2 < 0, then
f(x2) is negative and the solution y will decrease, moving away from the stationary
solution y = 0. This can be summarized in Fig. 5, where we include arrows to
demonstrate the behaviour of the solution.

Example 6.3. We study a modification of the Logistic equation, called Logistic
equation with threshold. Let r > 0,0 < T <K be positive constants, and consider the
equation

y′ = f(y) = −r (1 −
y

T
)(1 −

y

K
) y.

First we identify the critical points, which are y1 = 0, y2 = T and y3 = K. Next,
plotting the graph y vs f(y) (see Fig. 6 for r = 1, T = 4 and K = 8) leads to a cubic
graph with the following observations:

• if initial condition y(0) = y0 ∈ (0, T ), then f(y0) is negative and the solution y
should decrease;

• if initial condition y(0) = y0 ∈ (T,K), then f(y0) is positive and the solution
y should increase;
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Figure 4: The plot y vs f(y) for the Logistic equation.

• if initial condition y(0) = y0 > K, then f(y0) is negative and the solution y
should decrease.

From this we deduce that

y(t) → 0 if 0 < y0 < T, y(t) → T if y0 = T, y(t) →K if y0 > T.

Furthermore, the direction plot Fig. 7 also supports our observations on the so-
lution behaviour.

The idea of using direction fields and the plot y vs f(y) to study the behaviour
of the solution without actually solving the ODE is the heart of this section. In
the above examples we saw that there are instances where if we start “close” to a
stationary solution, we either converge to the stationary solution, or we move away
to another stationary solution, or even possibly the solution y(t) goes to ±∞ as
t→∞. We characterize this type of phenomena with the following definition.

Definition 6.2 (Stability). Given an autonomous first order ODE y′ = f(y), and
a stationary solution y∗. We say that y∗ is asymptotically stable if there is an
δ0 > 0 (depending only on y∗) such that for any solution φ(t) to the IVP

y′ = f(y) for t ∈ I, y(t0) = y0 with t0 ∈ I,

the following property is fulfilled:

∣y0 − y∗∣ < δ0 Ô⇒ φ(t) → y∗ as t→∞ ,

i.e., if we start close to y∗, we will move towards y∗ as time progresses. The
stationary solution y∗ is called stable if for every ε > 0 there is a δ > 0 (depending
only on y∗ and ε) such that

∣y0 − y∗∣ < δ Ô⇒ ∣φ(t) − y∗∣ < ε ∀t ≥ t0 ,
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Figure 5: The plot y vs f(y) for the Logistic equation. Arrows indicate the behaviour
of the solution.

i.e., if we start close to y∗, then it is guaranteed that we do not move too far away
from y∗. However, the trajectory {φ(t)}t≥t0 does not need to approach y∗ as t→∞.
If y∗ is not stable, then we call it unstable.

Note that for an unstable stationary solution y∗, aside from y0 = y∗, which implies
that y(t) = y∗ for all t ≥ t0, any other initial condition would lead to ∣y(t) − y∗∣ ↛ 0,
and so the solution y(t) will never reach y∗ for an unstable stationary solution.

For the Logistic equation, the stationary solution y∗ = 0 is unstable, and y∗ =K
is asymptotically stable for any initial condition y0 > 0. For the Logistic equation
with threshold, y∗ = 0 and y∗ =K are asymptotically stable and y∗ = T is unstable.

6.2 First order linear systems

We now turn to first order linear systems of the form

y⃗′(t) = Ay⃗(t),

where A ∈ R2×2 is a constant matrix with real coefficients. For the upcoming analysis,
we will make the following assumptions:

A is non-singular ⇔ detA ≠ 0, and 0 is not an eigenvalue of A .

Then, the only possible solution to

Ax⃗ = 0⃗

is the zero vector x⃗ = 0⃗. This implies that 0⃗ is the unique critical point.

Compare to first order equations, the solution y⃗ to y⃗′(t) = Ay⃗(t) is a vector, and
in this case y⃗ = (y1, y2). Without going to a three dimensional plot (t, y1(t), y2(t)),
we can still obtain information on the behaviour of the solution y⃗(t).
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Figure 6: The plot y vs f(y) for the Logistic equation with threshold. Arrows
indicate the behaviour of the solution.

Definition 6.3. We call the (y1, y2) plane as the phase plane. A solution y⃗(t) =
(y1(t), y2(t)) for t ∈ I traces out a curve in the phase plane, which we call a
trajectory. As it is impossible to draw all trajectories, for a representative set
of trajectories we call a phase portrait.

The phase portrait will yield crucial information about the stability of the critical
points - which are determined by the eigenvalues of the matrix A. For a 2×2 matrix,
we have the following three possibilities for eigenvalues:

(a) Real, distinct eigenvalues r1 ≠ r2,

(b) Complex conjugate pairs of eigenvalues r1 = λ + iµ, r2 = r1,

(c) Real, repeated eigenvalues r1 = r2.

6.2.1 Real distinct eigenvalues with the same sign

Recall that if r1 ≠ r2, then the eigenvectors ξ⃗1, ξ⃗2 corresponding to r1 and r2 are
linearly independent, and the general solution to y⃗′(t) = Ay⃗(t) is

y⃗(t) = c1ξ⃗1e
r1t + c2ξ⃗2e

r2t.

If both r1 and r2 are negative, then as t →∞, we have that y⃗(t) → 0⃗. In particular
all solutions tend to the critical point. We now illustrate how this happens in the
phase portrait.

First, if the initial condition y⃗(0) = x⃗ with x⃗ is parallel to ξ⃗1, then c2 = 0 and
so y⃗(t) = c1ξ⃗1er1t and thus the solution always stays on the line spanned by the
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Figure 7: Direction field for the Logistic equation with threshold.

vector ξ⃗1. Analogously if x⃗ is parallel to ξ⃗2, then c1 = 0 and y⃗(t) always stays on the

line spanned by ξ⃗2. This is illustrated in Fig. 8 for the matrix A = (
−1 0
−1 −0.25

)

with eigenvalues r1 = −1, r2 = −0.25 and eigenvectors ξ⃗1 = (3,4) and ξ⃗2 = (0.1).

Figure 8: Behaviour of solution to y⃗′(t) = Ay⃗(t) if eigenvalues are negative and
distinct. The blue lines indicate the lines spanned by the eigenvectors ξ⃗1 and ξ⃗2,
which need not be perpendicular.

So how does y⃗(t) approaches the critical point 0⃗ if the initial condition x⃗ does
not lie on the lines spanned by ξ⃗1 or ξ⃗2? We rewrite the expression for the general
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solution into

y⃗(t) = er2t (c1ξ⃗1e
(r1−r2)t + c2ξ⃗2) if r1 < r2,

y⃗(t) = er1t (c1ξ⃗1 + c2ξ⃗2e
(r2−r1)t) if r2 < r1.

If r1 < r2, then as t→∞, the term c1ξ⃗1e(r1−r2)t is negligible. Therefore, the trajecto-
ries tend towards the line spanned by ξ⃗2. Note that as t→ −∞ (running backwards
in time), the term c1ξ⃗1e(r1−r2)t is dominating the expression. Hence, the trajectories
would have nearly the same slope as ξ⃗1 as t→∞. This leads to the picture in Fig. 9.

Figure 9: Phase portrait of y⃗′(t) = (
−1 0
−1 −0.25

).

Analogously, if r2 < r1, then we have a similar situation, namely the trajectories
coming from past time (t → ∞) would have the same slope as ξ⃗2, and approaches
the slope of ξ⃗1 as t→∞.

For this case where the eigenvalues are negative, we call the critical point 0⃗ a
nodal sink, since all trajectories point towards 0⃗. If r1, r2 > 0, then we get the same
phase portrait, but the direction of motion is reversed. Hence, trajectories will move
away from the critical point 0⃗. In this case we call 0⃗ a nodal source.

6.2.2 Real distinct eigenvalues with opposite sign

Without loss of generality, suppose r2 < 0 < r1. Then, from the expression for the
general solution

y⃗(t) = c1ξ⃗1e
r1t + c2ξ⃗2e

r2t,

we observe the following:
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(a) rewriting

y⃗(t) = er1t (c1ξ⃗1 + c2ξ⃗2e
(r2−r1)t)

for t→∞, with r2 − r1 < 0, the term c2ξ⃗2e(r2−r1)t is negligible compared to the
other term c1ξ⃗1. Hence, the trajectories approach the line spanned by ξ⃗1 as
t→∞.

(b) Writing

y⃗(t) = er2t (c1ξ⃗1e
(r1−r2)t + c2ξ⃗2) ,

for t→ −∞, with r1−r2 > 0, the term c1ξ⃗1e(r1−r2)t is negligible compared to the
other term c2ξ⃗2. Hence, the trajectories originate from the line spanned by ξ⃗2.

(c) If c1 = 0, and c2 ≠ 0, then y⃗(t) = c2ξ⃗2er2t → 0⃗ as t→∞.

(d) If c2 = 0, and c1 ≠ 0, then y⃗(t) = c1ξ⃗1er1t → 0⃗ as t→ −∞.

These four observations yields the phase portrait in Fig. 10 for the matrix A =

(
3 2
−2 −2

) with eigenvalues r1 = 2, r2 = −1 and eigenvectors ξ⃗1 = (−2,1) (lower blue

line), ξ⃗2 = (−1,2) (higher blue line).

Figure 10: Phase portrait for y⃗′(t) = (
3 2
−2 −2

) y⃗(t).

For the case r1 < 0 < r2 we obtain the same portrait, but the arrows are reversed.
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6.2.3 Equal eigenvalues, two L.I. eigenvector

Assume we have a repeated eigenvalue r1 = r2 = r, with two linearly independent
eigenvectors vecξ1 and ξ⃗2. Then the expression for the general solution is

y⃗(t) = (c1ξ⃗1 + c2ξ⃗2) e
rt.

If r < 0 then y⃗(t) → 0⃗ as t → ∞ independently of the sign of c1 and c2. This means
that every trajectory is a straight line through the critical point 0⃗, see Fig. 11.

Similarly, if r > 0, then y⃗(t) → 0⃗ as t → −∞ independently of the sign of c1 and c2.
The trajectories are also straight lines through the critical point. In such a case, we
call the critical point a proper node or a star point.

Figure 11: Phase portrait for y⃗′(t) = (
−1 0
0 −1

) y⃗(t).

6.2.4 Equal eigenvalues, 1 L.I. eigenvector

Let r1 = r2 = r be the repeated eigenvalue, and ξ⃗ the associated eigenvector. Then,
the general solution is

y⃗(t) = c1ξ⃗e
rt + c2ξ⃗te

rt + c2η⃗e
rt

= ert ((c1ξ⃗ + c2η⃗) + tc2ξ⃗) =∶ e
rtz⃗(t),

where we recall that η⃗ is a generalized eigenvector to the eigenvalue r, i.e.,

(A − rI)ξ⃗ = 0⃗, (A − rI)η⃗ = ξ⃗.

To sketch the trajectories, note for fixed c1 and c2, the vector function z⃗(t) = (c1ξ⃗ +
c2η⃗) + tc2ξ⃗ is a straight line through the point c1ξ⃗ + c2η⃗ in the direction ξ⃗. Writing
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the solution y⃗(t) as y⃗(t) = ertz⃗(t) allows us to interpret that z⃗(t) determines the
direction of the trajectory and ert is the magnitude.

The simplest case is c2 = 0 and c1 ≠ 0, then we have

y⃗(t) = c1ξ⃗e
rt,

which for r < 0, we have y⃗(t) → 0⃗ as t→∞. This can be see in Fig. 12 for the matrix

A = (
1 4
−4 7

) with a repeated eigenvalue r = −3 and eigenvector ξ⃗ = (−1,1), where

along the blue line the trajectories move towards the critical point 0⃗ if r < 0.

Figure 12: Phase portrait for y⃗′(t) = (
1 4
−4 −7

) y⃗(t).

To fill in the rest of the phase portrait, we need to draw the trajectories for
c1, c2 ≠ 0. The first thing to draw is the line given by c1ξ⃗ + c2η⃗+ tc2ξ⃗, and take note
which is the direction of increasing t. Note that the direction of increasing t is
different for c2 > 0 and for c2 < 0. This is given in Fig. 13.

From the expression

y⃗(t) = (c1ξ⃗ + c2η⃗ + c2tξ⃗)e
rt,

the dominating term is c2tξ⃗ert for large (positive/negative) values of t, and so we
expect the trajectories to be parallel to the line spanned by ξ⃗.

As t increases, the direction of the trajectories follow the direction of increasing
t, but due to r < 0, the magnitude is shrinking exponentially. So we expect that the
trajectory to travel along the direction of increasing t, but do a sharp turn to go
back to the origin. This is reflected in Fig. 14.
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Figure 13: Phase portrait for y⃗′(t) = (
1 4
−4 −7

) y⃗(t). The green arrows indicate

the direction of increasing t.

It is worth pointing out that not all trajectories make a turn. If the trajectory
does not overshoot the origin, it will go straight towards the critical point, as
shown in the blue trajectories in Fig. 14.

For the case r > 0, we have the same phase portrait, but the direction of the
trajectories are reversed, i.e., the origin is unstable and every trajectories is leaving

the origin. See for example Fig. 15 for the matrix A = (
3 1
−4 −1

) with repeated

eigenvalue r = 1 and eigenvector ξ⃗ = (−1,2). This gives an unstable critical point at
the origin.

In these cases, where the geo. mult. of the repeated eigenvalue is equal to one,
we call the critical point an improper node or a degenerate node.

6.2.5 Complex eigenvalues, non-zero real part

Suppose r1 = λ + iµ, for λ,µ ∈ R with λ ≠ 0, and so r2 = λ − iµ. Denoting the
corresponding eigenvectors to be ξ⃗1 = u⃗ + iv⃗ with ξ⃗2 = u⃗ − iv⃗, and set

y⃗1(t) = e
λt(u⃗ cos(µt) − v⃗ sin(µt)) = eλtz⃗1(t),

y⃗2(t) = e
λt(u⃗ sin(µt) + v⃗ cos(µt)) = eλtz⃗2(t),

we have the general solution

y⃗(t) = eλt(c1z⃗1(t) + c2z⃗2(t)),

for c1, c2 ∈ R arbitrary. Note that z⃗1 and z⃗2 are functions of cosine and sine, and
therefore are periodic functions in t. We expect that
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Figure 14: Phase portrait for y⃗′(t) = (
1 4
−4 −7

) y⃗(t). Blue trajectories do not turn

around to reach the origin.

(1) if λ < 0, then y⃗(t) → 0⃗ as t→∞;

(2) if λ > 0, then y⃗(t) → 0⃗ as t→ −∞.

So, for λ < 0, we expect the trajectories to encircle the critical point while tending

towards 0⃗ like a spiral, see Fig. 16 for A = (
−1 −1
2 −1

) with r1 = −1+
√

2i. For λ > 0,

we have the same phase portrait, but we spiral outwards.

One way to determine whether the trajectories spiral “clockwise” or “anticlock-
wise” is to look at the transformation of a point by the matrix A. For example

y⃗′(t) = (
−0.5 1
−1 −0.5

) y⃗(t)

has a matrix A with eigenvalues −0.5 ± i. Applying the matrix A to the point
x⃗ = (0,1) yields

x⃗′ = Ax⃗ = (
1

−0.5
) .

The vector (1,−0.5) provides a direction which the trajectories will be traveling.
Therefore, if a trajectory starts at (0,1), it will move in a direction (1,−0.5) and so
the trajectories spiral in a clockwise direction.

We call the critical point 0⃗ a spiral point in the case where the eigenvalues of
the matrix A are complex conjugate pairs with non-zero real part. If λ < 0 we have
a spiral sink and if λ > 0 we have a spiral source.
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Figure 15: Phase portrait for y⃗′(t) = (
3 1
−4 −1

) y⃗(t).

6.2.6 Purely imaginary eigenvalues

We now consider the case where the eigenvalues of the matrix A are purely imaginary,
i.e., r1 = iµ, r2 = −iµ for µ ∈ R. In this case the general solution is

y⃗(t) = c1z⃗1(t) + c2z⃗2(t)

= c1(u⃗ cos(µt) − v⃗ sin(µt)) + c2(u⃗ sin(µt) + v⃗ cos(µt)),

where ξ⃗1 = u⃗ + iv⃗ is the eigenvector corresponding to r1. Due to the periodic nature
of z⃗1 and z⃗2 we expect the trajectories to encircle the critical point, but neither
approach nor move away as t→∞. This can also be seen from rewriting the general
solution:

y⃗(t) =
√
c21 + c

2
2

⎛

⎝
u⃗ cos(µt)

c1
√
c21 + c

2
2

+ u⃗ sin(µt)
c2

√
c21 + c

2
2

⎞

⎠

+
√
c21 + c

2
2

⎛

⎝
v⃗ cos(µt)

c2
√
c21 + c

2
2

− v⃗ sin(µt)
c1

√
c21 + c

2
2

⎞

⎠

=
√
c21 + c

2
2 (u⃗ sin(θ + µt) + v⃗ cos(θ + µt)) ,

where θ ∈ [0,2π] is a constant such that sin(θ) = c1√
c21+c

2
2

and cos(θ) = c2√
c21+c

2
2

. The

last line shows that the trajectory {y⃗(t)}t∈I can be seen as a ellipse centered at the
origin with a fixed distance that is not changing in time. See for example Fig. 17

for the matrix A = (
2 1
−5 −2

) with eigenvalues r1 = i, r2 = −i.

Again, the direction of the trajectories “clockwise” or “anticlockwise” can be
determined by testing one point with the matrix A. For example starting from the
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Figure 16: Phase portrait for y⃗′(t) = (
−1 −1
2 −1

) y⃗(t).

point x⃗ = (0,1) we have

x⃗′ = Ax⃗ = (
1
−2

) .

From this we expect the trajectories to move clockwise. For the case where the
eigenvalues of A are purely imaginary, we call the critical point a center.

Summary. The behaviour of trajectories for the system y⃗′(t) = Ay⃗(t) where the
origin 0⃗ is a critical point depends heavily on the non-zero eigenvalues r1, r2. One
of the following three situations can occur:

• All trajectories approach 0⃗ as t → ∞, then 0⃗ is either a nodal sink or a
spiral sink.

• All trajectories remains bounded (contained in a bounded set in the phase
space) but do not approach 0⃗ as t→∞. Then 0⃗ is a centre.

• Some trajectories (possibly all) except the trajectory y⃗∗(t) = 0⃗ for all t, be-
comes unbounded as t→∞. Then 0⃗ is either a nodal source, a spiral source
or a saddle point.

Note that due to the uniqueness, through each point (y1, y2) of the phase
plane, there is only one trajectory passing through that point. This implies that
trajectories do not cross each other.

Similar to the case of scalar equations, we now give a notion of stability for
systems of equations.
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Figure 17: Phase portrait for y⃗′(t) = (
2 1
−5 −2

) y⃗(t).

Definition 6.4 (Stability). Let y⃗∗ be a critical point of the autonomous system

y⃗′(t) = f⃗(y⃗(t)) for t ≥ 0,

i.e., f⃗(y⃗∗) = 0⃗. We say that

(1) y⃗∗ is stable if for any ε > 0, there exists a δ > 0 (depending on y∗ and ε) such
that any solution y⃗ = φ⃗(t) to y⃗′(t) = f⃗(y⃗(t)) satisfies

∣φ(0) − y⃗∗∣ < δ Ô⇒ ∣φ⃗(t) − y⃗∗∣ < ε ∀t ≥ 0.

1. y⃗∗ is unstable if it is not stable.

2. y⃗∗ is asymptotically stable if it is stable and there exists δ0 > 0 (depending
only on y∗) such that

∣φ⃗(0) − y⃗∗∣ < δ0 Ô⇒ φ⃗(t) → y⃗∗ as t→∞.

Note that asymptotic stability is a stronger property than stability. Furthermore,
the stability property means that the trajectories do not have to tend towards y⃗∗,
they just have to remain close by.

We can now classify for A ∈ R2×2 the stability of the critical point 0⃗:

6.2.7 Zero as one of the eigenvalues

What if 0 is an eigenvalue of A? That is r1 = 0 and r2 ≠ 0. Then note that the
corresponding eigenvector ξ⃗ to the eigenvalue 0 satisfies

Aξ⃗ = 0⃗,
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Eigenvalues Type Stability
r1 > r2 > 0 Node Unstable
r1 > 0 > r2 Saddle Unstable
r1 < r2 < 0 Node Asym. stable
r1 = r2 < 0 Proper / improper node Asym. stable
r1 = r2 > 0 Proper / improper node Unstable
r1 = λ + iµ Spiral Unstable (λ > 0), Asym. stable (λ < 0)
r1 = iµ Center Stable

Table 1: Type and stability of the critical point based on the eigenvalues

and so every point on the straight line {tξ⃗ ∶ t ∈ R} is a critical point. For example,
consider the matrix

A = (
−1 0
−1 0

) with r1 = 0, r2 = −1, ξ⃗1 = (
0
1

) , ξ⃗2 = (
1
1

) .

Thus, all points on the vertical axis {t(0,1) ∶ t ∈ R} is a critical point. The phase
portrait is plotted in Fig. 18. Note that once a trajectory hits the vertical axis, it
stops and does not appear on the other side of the axis. Another example is with

the matrix A = (
0 0
0 −1

) whose phase portrait is given in Fig. 19.

Figure 18: Phase portrait for y⃗′(t) = (
−1 0
−1 0

) y⃗(t).

The question is whether the critical point 0⃗ is stable or unstable or asym. stable.
If r2 < 0, then 0⃗ is stable but not asym. stable, and if r2 > 0, then 0⃗ is unstable.

Example 6.4. For

y⃗′(t) = (
−5 1
4 −2

) y⃗(t) =∶ Ay⃗(t)
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Figure 19: Phase portrait for y⃗′(t) = (
0 0
0 −1

) y⃗(t).

determine the critical points and their stability. Draw the phase portrait.

(1) x⃗ is a critical point if Ax⃗ = 0⃗. Since detA = 6 ≠ 0, the matrix A is invertible
and so 0⃗ is the only critical point.

(2) Computing the eigenvalues, we find that

det(A − rI) = (r + 6)(r + 1) = 0

and so r1 = −6 and r2 = −1. These are real distinct eigenvalues and thus 0⃗ is
an asym. stable node.

(3) Computing the eigenvectors yields

ξ⃗1 = (
1
−1

) , ξ⃗2 = (
1/4
1

) ,

then the general solution is

y⃗(t) = c1 (
1
−1

) e−6t + c2 (
1/4
1

) e−t = e−t (c1 (
1
−1

) e−5t + c2 (
1/4
1

)) .

For large t > 0, y⃗(t) → 0⃗ with trajectories parallel to (
1/4
1

). For large t < 0,

the dominating term is c1 (
1
−1

) e−5t and so the trajectories are parallel to

(
1
−1

). This yields the phase portrait Fig. 20.
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Figure 20: Phase portrait for y⃗′(t) = (
−5 1
4 −2

) y⃗(t).

Example 6.5. For

y⃗′(t) = (
1 1
1 −1

) y⃗(t) − (
4
0

) =∶ Ay⃗(t) − (
4
0

) ,

find all critical points and examine their stability. Draw the phase portrait.

Note that this is a non-homogeneous system of equations. Nevertheless we can
still find the critical points. We see that x⃗ is a critical point if

Ax⃗ − (
4
0

) = 0⃗ Ô⇒ x⃗ = A−1 (
4
0

) .

Since detA = −2, the matrix is invertible and we find the critical point y⃗∗ to be

y⃗∗ = (
2
2

) .

Next, to examine the stability of y⃗∗, we transform the system. Set

z⃗(t) = y⃗(t) − y⃗∗ Ô⇒ z⃗′(t) = Az⃗(t).

Note that the critical point is now z⃗∗ = 0⃗. Therefore stability of z⃗∗ is equivalent to
stability of y⃗∗.

Computing the eigenvalues and eigenvectors, we find that

det(A − rI) = r2 − 2 = 0 Ô⇒ r1 =
√

2, r2 = −
√

2,
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and so we have distinct real eigenvalues with different sign. Therefore, z⃗∗ (and so
y⃗∗) is a saddle point which is unstable. We also find that

ξ⃗1 = (
1√

2 − 1
) , ξ⃗2 = (

1

−1 −
√

2
) ,

with the general solution

z⃗(t) = c1 (
1√

2 − 1
) e
√
2t + c2 (

1

−1 −
√

2
) e−

√
2t

⇔ y⃗(t) = c1 (
1√

2 − 1
) e
√
2t + c2 (

1

−1 −
√

2
) e−

√
2t + (

2
2

) .

For t→∞, the trajectories are parallel to (
1√

2 − 1
) and for t→ −∞, the trajectories

are parallel to (
1

−1 −
√

2
). This leads to the following phase portrait for z⃗ in Fig. 21

and for y⃗ in Fig. 22.

Figure 21: Phase portrait for z⃗′(t) = (
1 1
1 −1

) z⃗(t).

6.3 Locally linear systems

For linear homogeneous systems with constant coefficients:

y⃗′(t) = Ay⃗(t), A ∈ R2×2,
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Figure 22: Phase portrait for y⃗′(t) = (
1 1
1 −1

) y⃗(t) − (
4
0

).

the behaviour of trajectories in the phase plane can be more or less determined by
the eigenvalues of A. Hence, the stability of critical points can also be deduced.
However, for nonlinear autonomous systems, this is not true due to the following
reasons:

• several or many critical points competing for influence of the trajectories;

• nonlinearity far away can affect stability of critical points.

To investigate nonlinear systems, one idea to to approximate them with linear
systems. However, when approximating we have to introduce the influence of small
perturbations, which can have significant effects on stability of critical points.

6.3.1 Perturbations for linear systems

For a matrix A ∈ R2×2 with eigenvalues r1 and r2, even small changes in the entries
of A will lead to changes in the eigenvalues. For example, the eigenvalues r1 may
change sign from positive to negative and vice versa, or even become complex-valued.
We give two examples on how this changes the stability of the critical point 0⃗.

Example 6.6. Let A be the original matrix with eigenvalues r1 and r2, while A∗

be the perturbed matrix with eigenvalues r∗1 and r∗2 . Suppose r1 = iµ and r2 = −iµ
are purely imaginary. Then, the critical point 0⃗ is a stable center. However, under
small perturbations, the new eigenvalues r∗1 and r∗2 may still be complex conjugate
pairs but most likely they will have non-zero real parts, as shown in Fig. 23. This
changes the trajectories from ellipses orbiting the critical point 0⃗ into spirals.
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Figure 23: The horizontal axis is λ and the vertical axis is µ. Perturbation of
purely imaginary eigenvalues may give rise to complex conjugate pairs with non-
zero real part, changing the critical point 0⃗ from a stable center to a (asym. stable
or unstable) spiral point.

Example 6.7. Let A be the original matrix with eigenvalues r1 and r2, while A∗ be
the perturbed matrix with eigenvalues r∗1 and r∗2 . Suppose r1 = r2 < 0, so that we have
a repeated eigenvalue and the critical point 0⃗ is a proper node that is asym. stable.
Then the following can happen (see Fig. 24):

(1) the new eigenvalues r∗1 and r∗2 are real but distinct, while the type of the critical
point 0⃗ can remain a node (if r∗1 < r

∗
2 < 0), or it might change into an unstable

saddle point (if r1 = r2 is close to zero and r∗1 < 0 < r∗2).

(2) the new eigenvalues are complex conjugate with non-zero imaginary parts. This
changes the critical point 0⃗ from a node to a spiral.

Figure 24: The horizontal axis is λ and the vertical axis is µ. Perturbation of
repeated eigenvalues may give rise to (1) distinct real eigenvalues or (2) complex
conjugate pairs with non-zero real part. This then changes the critical point 0⃗ from
a node to a spiral (if the new eigenvalues are complex).

6.3.2 Linear approximations to nonlinear systems

We now consider a nonlinear autonomous two-dimensional system of equations

y⃗′(t) = f⃗(y⃗(t)), y⃗ ∈ R2,
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with a critical point at x⃗∗, i.e., f⃗(x⃗∗) = 0⃗. Without loss of generality we can take x⃗∗
as the origin. Since, if x⃗∗ ≠ 0⃗, then we can use the variable z⃗ = y⃗ − x⃗∗ and observe
that

z⃗′(t) = y⃗′(t) = f⃗(y⃗(t)) = f⃗(z⃗(t) + x⃗∗) =∶ h⃗(z⃗(t)),

with

h⃗(0⃗) = f⃗(x⃗∗) = 0⃗.

That is, 0⃗ is a critical point of z⃗′(t) = h⃗(z⃗(t)).

Definition 6.5. A critical point x⃗∗ is isolated if there is a circle about x⃗∗ where
no other critical points are in the circle.

The main idea of this section is to investigate the stability of the critical point
x⃗∗ to the nonlinear system by studying an associated linear system. Using Taylor’s
theorem we can expand

f⃗(y⃗) = f⃗(0⃗) +Df⃗(0⃗)y⃗ + g⃗(y⃗) = Df⃗(0⃗)y⃗ + g⃗(y⃗) ,

where Df⃗ is the Jacobian matrix of f⃗ defined as

Df⃗(x⃗) = (
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

) ,

and g⃗(y⃗) is a vector containing all higher order derivatives. Using this gives

y⃗′(t) = f⃗(y⃗(t)) = Df⃗(0⃗)y⃗(t) + g⃗(y⃗(t)) .

The idea is that if g⃗(y⃗(t)) is “small” for trajectories {y⃗(t) ∶ t ∈ I} close to the
critical point 0⃗, then the nonlinear system y⃗′(t) = f⃗(y⃗(t)) = Df⃗(0⃗)y⃗(t) + g⃗(y⃗(t))
should be well approximated by the linear system

y⃗′(t) = Df⃗(0⃗)y⃗(t) ,

close to the critical point 0⃗. This motivates the following definition.

Definition 6.6 (Locally linear systems). We say that the nonlinear system

y⃗′(t) = f⃗(y⃗(t)), y⃗ ∈ R2,

with an isolated critical point 0⃗ is locally linear near 0⃗ if there is a 2 × 2 matrix
A ∈ R2×2 and a vector function g⃗(y⃗(t)) such that

y⃗′(t) = Ay⃗(t) + g⃗(y⃗(t)), lim
y⃗→0⃗

∣∣g⃗(y⃗)∣∣

∣∣y⃗∣∣
= 0 ,

where ∣∣y⃗∣∣ =
√
y21 + y

2
2 and ∣∣g⃗(y⃗)∣∣ =

√
(g1(y1, y2))2 + (g2(y1, y2))2.
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The condition

lim
y⃗→0⃗

∣∣g⃗(y⃗)∣∣

∣∣y⃗∣∣
= 0

is how we quantify “smallness” of g⃗(y⃗), which means that the vector g⃗(y⃗) has smaller
influence on the trajectories that the linear part Ay⃗. Furthermore, it is clear that
the matrix A should be the Jacobian matrix Df⃗(0⃗).

Example 6.8. Consider the system

y⃗′(t) = (
1 0
0 0.5

) y⃗(t) + (
−y21 − y1y2

−0.75y1y2 − 0.25y22
) .

Then, setting

A = (
1 0
0 0.5

) , g⃗(y⃗) = (
−y21 − y1y2

−0.75y1y2 − 0.25y22
) ,

we proceed to check that

(1) 0⃗ is indeed a critical point;

(2) The other critical points are (0,2), (1,0) and (1/2,1/2). Thus, 0⃗ is an isolated
critical point;

1. To verify the condition

lim
y⃗→0⃗

∣∣g⃗(y⃗)∣∣

∣∣y⃗∣∣
= 0,

it is useful to use polar coordinates: y1 = r cos θ and y2 = r sin θ. Then ∣∣y⃗∣∣ = r
and

∣∣g⃗(y⃗)∣∣2 = (r2 cos2 θ + r2 cos θ sin θ)2 + (0.75r2 cos θ sin θ + 0.25r2 sin2 θ)2

= r4 ((cos2 θ + cos θ sin θ)2 + (0.75 cos θ sin θ + 0.25 sin2 θ)2) .

So that

lim
y⃗→0⃗

∣∣g⃗(y⃗)∣∣

∣∣y⃗∣∣
= lim
r→0

r ((cos2 θ + cos θ sin θ)2 + (0.75 cos θ sin θ + 0.25 sin2 θ)2)
1/2

= 0.

Hence, the system is locally linear near 0⃗.

Remark 6.1. (a) Note that if the critical point is x⃗∗ instead of 0⃗, then we want
to derive a linear system close to x⃗∗. It is convenient to set z⃗ = y⃗ − x⃗∗, so
that 0⃗ is the critical point for the system in the variable z⃗. Then, as before by
Taylor expansion

y⃗′(t) = z⃗′(t) = f⃗(z⃗ + x⃗∗) ≈ f⃗(x⃗∗) +Df⃗(x⃗∗)z⃗ + H⃗(z⃗)

= Df⃗(x⃗∗)(y⃗ − x⃗∗) + H⃗(y⃗ − x⃗∗),

where H⃗ contains terms of higher derivatives. The small condition now is
given as

lim
y⃗−x⃗∗→0⃗

∣∣H⃗(y⃗ − x⃗∗)∣∣

∣∣y⃗ − x⃗∗∣∣
= lim
z⃗→0⃗

∣∣H⃗(z⃗)∣∣

∣∣z⃗∣∣
= 0.
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(b) If f⃗ is a twice continuously differentiable vector function, then y⃗′(t) = f⃗(y⃗(t))
is automatically locally linear near the critical point 0⃗. That is, there is no
need to check the condition limy⃗→0⃗

∣∣g⃗(y⃗)∣∣
∣∣y⃗∣∣ .

(c) The matrix Df⃗(0⃗) is a 2 × 2 matrix with constant coefficients.

In showing that g⃗(y⃗) is “small” compared to the linear part Df⃗(0⃗)y⃗, we hope that
the trajectories near the critical point 0⃗ for the locally linear system y⃗′(t) = Df⃗(0⃗)y⃗+
g⃗(y⃗) can be well approximated by studying the linear system y⃗′(t) = Df⃗(0⃗)y⃗(t),
which we have studied previously. This turns out to be true in most cases, but not
all.

Theorem 6.1 (Stability for locally linear system). Let r1 and r2 be the eigenvalues
of Df⃗(0⃗). Then, aside from the cases (a) r1 = iµ for µ ∈ R (and so r2 = −iµ) and
(b) r1 = r2 ∈ R, the type and stability of the critical point 0⃗ for the locally linear
system y⃗′(t) = Df⃗(0⃗)y⃗+ g⃗(y⃗) and the linear system y⃗′(t) = Df⃗(0⃗)y⃗(t) are the same.

In particular, we have the following table:

r1, r2 Type Stability
r1 > r2 > 0 Node Unstable
r1 < r2 < 0 Node Asym. stable
r1 < 0 < r2 Saddle Unstable

r1, r2 = λ ± iµ Spiral Unstable (λ > 0), Asym. stable (λ < 0)

For the other cases, we have

r1, r2 Type Stability
r1 = r2 > 0 Node or Spiral Unstable
r1 = r2 < 0 Node or Spiral Asym. stable
r1, r2 = ±iµ Center or Spiral Undetermined

The proof of the theorem is beyond the scope of this course. We make the
following observations:

(1) Compare to Table 1, the type and stability of the critical point for the locally
linear system are rather similar. Except for the case of equal eigenvalues and
purely imaginary eigenvalues.

(2) The reason for this is that even though the nonlinear term g⃗(y⃗) is small com-
pare to the linear term Df⃗(0⃗), its influence on the eigenvalues can be large if
we have purely imaginary eigenvalues or repeated eigenvalues, as discussed in
Sec. 6.3.1.

(3) Small nonlinear terms may change the stable center (if we have purely imagi-
nary eigenvalues) into a spiral point - which can be unstable or asym. stable.
Therefore, when we computed that Df⃗(0⃗) has purely imaginary eigenvalues,
the theorem cannot determine the type and stability of the critical point.
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(4) A similar thing happens for the case of repeated eigenvalues, where the nonlin-
ear terms may change the node into a spiral. However, things are a bit better
regarding the stability as the property of asym. stable or unstable remain
unchanged.

We will present a method later to deduce the stability of the critical point when
we encounter the case of purely imaginary eigenvalues. But first, we apply this to a
physical application - the damped pendulum.

6.3.3 Damped pendulum

Recall from Chapter 1, the equation for the motion of a damped pendulum is

θ′′ + γθ′ +w2 sin θ = 0,

where θ is the angle the pendulum makes with the vertical line, and the parameter
γ > 0 is a damping factor taking into account friction forces. As this is a second
order nonlinear equation, we can express this into a first order system: Introducing
the notation

y1 = θ, y2 = θ
′,

then

y⃗′(t) = (
y2

−w2 sin y1 − γy2
) =∶ f⃗(y⃗). (6.1)

Step 1. The critical points of the above systems satisfy

y2 = 0, sin y1 = 0,

and so the critical points are (±nπ,0) for n ∈ Z.

Step 2. Check to see if (6.1) is locally linear near the critical points. First for
(0,0) we write (6.1) as

y⃗′(t) = (
0 1

−w2 γ
) y⃗ −w2 (

0
sin y1 − y1

) =∶ Ay⃗(t) + g⃗(y⃗(t)).

Then, for y⃗ close to (0,0) we check

lim
y⃗→0⃗

∣∣g⃗(y⃗)∣∣

∣∣y⃗∣∣
= 0.

For small y1, by Taylor’s expansion we have

sin y1 = y1 −
y31
3!
+ . . . ,
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and by polar coordinates y1 = r cosφ, y2 = r sinφ, we find that

∣∣g⃗(y⃗)∣∣ = w2∣ sin y1 − y1∣ = w
2 ∣r3

cos3 φ

3!
− r5

cos5 φ

5!
+ . . . ∣ ,

and so

lim
y⃗→0

∣∣g⃗(y⃗)∣∣

∣∣y⃗∣∣
= lim
r→0

w2r2 ∣
cos3 φ

3!
− r2

cos5 φ

5!
+ . . . ∣ = 0.

That is, (6.1) is locally linear near (0,0). What about near (π,0)? For this we
employ a transformation

z⃗ = y⃗ − (
π
0

) ,

and so if z⃗ is small, then y⃗ is close to the critical point (π,0). Then, it is clear that

z⃗′(t) = y⃗′(t) = f⃗(y⃗(t)) = f⃗(z⃗(t) + (π,0)) = (
z2

−w2 sin(z1 + π) − γz2
) = (

z2
w2 sin z1 − γz2

) ,

upon using the addition formula for sin(⋅):

sin(z1 + π) = sin z1 cosπ + cos z1 sinπ = − sin z1.

Thus,

z⃗′(t) = (
0 1
w2 −γ

) z⃗(t) + (
0

w2(sin z1 − z1)
) =∶ Bz⃗(t) + h⃗(z⃗(t)). (6.2)

Similar arguments as before show that

lim
z⃗→0⃗

∣∣h⃗(z⃗)∣∣

∣∣z⃗∣∣
= 0

if we use polar coordinates and Taylor expansion for sin(⋅) for small values of z1.
Hence, (6.1) is also locally linear near (π,0).

The same arguments can be used to show that (6.1) is locally linear near all the
critical points (±nπ,0) for n ∈ Z. We now investigate the stability of the associated
linear system and infer results for the locally linear system.

Step 3. Near the critical point (0,0), (6.1) can be expressed as the locally linear
system

y⃗′(t) = (
0 1

−w2 γ
) y⃗ −w2 (

0
sin y1 − y1

) =∶ Ay⃗(t) + g⃗(y⃗(t)).

Note that one can also obtain the matrix A by computing the Jacobian matrix for
f⃗ , which we will do below:

Df⃗(y⃗) = (
0 1

−w2 cos y1 −γ
) .
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At the critical point (0,0) we see that the Jacobian matrix Df⃗(0⃗) coincides with A.
Now by computing the eigenvalues of A, we first determine the type and stability of
the critical point 0⃗ to the linear system y⃗′(t) = Ay⃗(t). We have

det(A − rI) = r2 + γr +w2 = 0,

and so

r1 = −
γ

2
+

1

2

√
γ2 − 4w2, r2 = −

γ

2
−

1

2

√
γ2 − 4w2.

The classification for the type and stability of the critical point (0,0) is as follows:

(1) if γ2 > 4w2, then r1, r2 are distinct negative eigenvalues and 0⃗ is an asym.
stable node.

(2) if γ2 = 4w2, then r1, r2 are equal but negative eigenvalues and 0⃗ is an asym.
stable node.

(3) if γ2 < 4w2, then r1, r2 are complex conjugate pairs of eigenvalues with negative
real part, and 0⃗ is an asym. stable spiral.

In fact the same classification holds for all critical points of the form (±2mπ,0) for
m ∈ Z, since Df⃗((±2mπ,0)) = A. Then, by Thm. 6.1, the critical points (±2mπ,0)
for m ∈ Z to the system (6.1) has the same type and stability as stated above.

Now we look at the critical point (π,0), which we transform to (0,0) when
studying the locally linear system (6.2). Observe that

Df⃗((π,0)) = (
0 1
w2 −γ

) = B,

and the eigenvalues for B are

r1 = −
γ

2
+

1

2

√
γ2 + 4w2, r2 = −

γ

2
−

1

2

√
γ2 + 4w2.

Note that
√
γ2 + 4w2 >

√
γ2 = γ,

and so r1 is positive and r2 is negative. This implies that (0,0) as a critical point
to the transformed system (6.2) is an unstable saddle point. This means that after
transforming back and also using Thm. 6.1, (π,0) is an unstable saddle point for
the pendulum system (6.1). A similar analysis then shows that (±(2m + 1)π,0) for
m ∈ Z are all unstable saddle points.

Step 4. We summarize the above with a phase portrait. Thanks to (6.1), we
now know that the “odd” critical points (±(2m + 1)π,0) for m ∈ Z are all unstable
saddle points, and depending on the values of γ and w2, the “even” critical points
(±2mπ,0) can be nodes or spirals, but they are always asym. stable if γ > 0. In
Fig. 25, we show the phase portrait highlighting the critical points (0,0), (π,0),
(2π,0) and (3π,0) for the parameters γ = 1, w = 1 (so that we have spirals). In
Fig. 26 we show the phase portrait for γ = 5, w = 1 (so that we have nodes).
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Figure 25: Phase portrait for the damped pendulum with γ = w = 1.

6.3.4 Undamped pendulum

Suppose we have no damping in the pendulum, which is equivalent to setting γ to
zero in (6.1). Then, still we have critical points (±nπ,0) for n ∈ Z. Computing the
Jacobian matrix near the “odd” critical points (±(2m + 1)π,0) for m ∈ Z yields

Df⃗((±(2m + 1)π,0)) = (
0 1
w2 0

) ,

with eigenvalues r1 = w, r2 = −w. This gives that (±(2m + 1)π,0) are all unstable
saddle points.

For the “even” critical points (±2mπ,0) for m ∈ Z, we have

Df⃗((±2mπ,0)) = (
0 1

−w2 0
) ,

with eigenvalues r1 = iw, r2 = −iw. Note that we have purely imaginary eigenvalues
and thus Thm. 6.1 cannot be used to deduce the stability of the critical points
(±2mπ,0).

6.4 Liapunov’s second method.

We now present a method to infer stability information about the “even” criti-
cal points of the undamped pendulum. The approach we discuss now is called
Liapunov’s second method, sometimes known as the direct method, since this
approach needs no knowledge of the solution to the system of equations, and con-
clusions about stability/instability of a critical point can be obtained.
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Figure 26: Phase portrait for the damped pendulum with γ = 5,w = 1.

Note that Liapunov’s first method is about representing solutions in a series and
then studying the convergence - we will not mention this in the course.

6.4.1 Application to the undamped pendulum

For the undamped pendulum, the original equation is

θ′′ +
g

L
sin θ = 0,

where we set w =
√
g/L for convenience. Introducing the variables y1 = θ, y2 = θ′ we

obtain the first order system

(
y′1
y′2

) = (
y2

− g
L sin y1

) . (6.3)

From physics there are two energies associated to the pendulum:

(a) Potential energy given by mgL(1 − cos y1) =mgL(1 − cos θ);

(b) Kinetic energy given by 1
2mL

2y22 =
1
2mL

2(θ′)2.

Let us make some observations

(i) The critical points to (6.3) are (±nπ,0) for n ∈ Z. We have previously studied
the stability and type of the “odd” critical points which are unstable saddle
points.

(ii) The potential energy is minimal (equal to zero) when y1 = ±2mπ for m ∈ Z,
while the maximum potential energy (equal to 2mgL) is achieved at y1 =
±(2m + 1)π for m ∈ Z.
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(iii) The total energy (the sum of the potential and kinetic energies) is

V (y1, y2) =mgL(1 − cos y1) +
1

2
mL2y22

is conserved, i.e.,

d

dt
V (y1(t), y2(t)) = 0.

And so, on trajectories (y1(t), y2(t))t∈I for an open interval I ⊂ R, the total
energy V (y1, y2) remains unchanged.

The last point is the crucial part of Liapunov’s second method. Note that at y1 =
±2mπ, y2 = 0, both the potential and kinetic energies are zero, and so the total
energy is zero at the “even” critical points. Hence, if we start with a trajectory
(y1(t), y2(t))t∈I with initial condition (z1, z2), i.e., y1(t0) = z1, y2(t0) = z2, that is
“close” to the “even” critical points, then by conservation of total energy we can
infer that

V (y1(t), y2(t)) = V (z1, z2) ∀t ∈ I,

and so the total energy for t > t0 will remain small.

For example, pick (z1, z2) close to (0,0), and for small values of y1, we can Taylor
expand cos(⋅) to obtain

V (y1(t), y2(t)) =mgL(1 − cos(y1(t))) +
1

2
mL2(y2(t))

2

≈
1

2
mgL(y1(t))

2 +
1

2
mL2(y2(t))

2,

and conservation of total energy gives

V (z1, z2) = V (y1(t), y2(t)) ≈
1

2
mgL(y1(t))

2 +
1

2
mL2(y2(t))

2.

Roughly speaking, the trajectories (y1(t), y2(t))t∈I can be approximated by the equa-
tion

y21

2V (z1,z2)mgL

+
y22

2V (z1,z2)mL2

= 1 .

This is the equation for an ellipse enclosing the critical point (0,0) where the major
and minor axes are determined by the initial energy V (z1, z2). In particular, the
smaller the initial energy V (z1, z2), the smaller the ellipse. Nevertheless this shows
that (0,0) is a stable critical point (not asym. stable like in the damped pendulum).

What about the critical point (2π,0)? Using a transformation

w⃗ = y⃗ − (
2π
0

) ,
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we have

(
w′

1

w′
2

) = (
w2

− g
L sin(w1 + 2π)

) = (
w2

− g
L sinw1

) ,

and so the critical point (2π,0) to the original undamped pendulum (6.3) is now
the critical point (0,0) to the transformed system for (w1,w2).

In the initial conditions (x1, x2) is close to (2π,0), and the initial total energy
V (x1, x2) is small, the trajectories (w1(t),w2(t))t∈I can be approximated by the
equation

y21

2V (x1−2π,x2)mgL

+
y22

2V (x1−2π,x2)mL2

= 1 .

In particular, we still get an ellipse, but the center is now at (2π,0) and so the
critical point (2π,0) is a stable center. The same arguments can be used to show
that the “even” critical points of the undamped pendulum are all stable centers.
Fig. 27 shows the phase portrait for w = 1.

Figure 27: Phase portrait for the undamped pendulum with w = 1.

6.4.2 General theory

In the undamped pendulum example, the function V plays a significant role in
helping us determine the stability of some critical points. Let us now consider a
nonlinear autonomous system

y′1 = F1(y1, y2), y′2 = F2(y1, y2) for t ∈ I,

with a critical point (0,0), i.e., F1(0,0) = F2(0,0) = 0. Denote by D ⊂ R2 a region
containing (0,0), and a trajectory by (y1(t), y2(t))t∈I .
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Definition 6.7 (Positive/negative definite). Let V ∶ R2 → R be a function such that
V (z1, z2) < ∞ for all (z1, z2) ∈D. We say

(a) V is positive definite on D if V (0,0) = 0 and V (z1, z2) > 0 for all (z1, z2) ∈
D ∖ {(0,0)};

(b) V is negative definite on D if V (0,0) = 0 and V (z1, z2) < 0 for all (z1, z2) ∈
D ∖ {(0,0)};

(c) V is positive semidefinite on D if V (0,0) = 0 and V (z1, z2) ≥ 0 for all
(z1, z2) ∈D;

(d) V is negative semidefinite on D if V (0,0) = 0 and V (z1, z2) ≤ 0 for all
(z1, z2) ∈D.

Note that in all of the above definitions, we always have the condition V (0,0) = 0.

Example 6.9. The function

V (x, y) = sin(x2 + y2),

on the region

D = {(x, y) ∈ R2 ∶ x2 + y2 < π/2},

which is a circle centre at the origin with radius strictly less than π/2. Then, it is
easy to check that V (0,0) = 0 and V (x, y) > 0 for (x, y) ∈ D ∖ {(0,0)}. Hence, V is
positive definite.

Example 6.10. The function

V (x, y) = (x + y)2

on the region D = R2 satisfies V (0,0) = 0. But V (−y, y) = 0 and so V is zero also
on the line y = x. This V is only positive semidefinite.

Returning to the nonlinear system

y′1 = F1(y1, y2), y′2 = F2(y1, y2) for t ∈ I,

and let V be a function of (y1, y2). Then,

d

dt
V (y1(t), y2(t)) =

∂V

∂y1
y′1 +

∂V

∂y2
y′2 = (

∂V

∂y1
F1 +

∂V

∂y2
F2) (y1, y2) =∶W (y1, y2) .

We now state two theorems - the first is about stability and the second is about
instability.

Theorem 6.2 (Liapunov’s stability theorem). Consider the autonomous system

y′1 = F1(y1, y2), y′2 = F2(y1, y2) for t ∈ I,

with an isolated critical point (0,0). Suppose there is a function V that is continuous
with continuous derivatives and is positive definite on a region D. If
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(a) the function W (y1, y2) = ( ∂V∂y1F1 +
∂V
∂y2
F2) (y1, y2) is negative definite on D,

then (0,0) is asym. stable.

(b) the function W (y1, y2) is negative semidefinite on D, then (0,0) is stable.

Let’s apply this to the undamped pendulum: Recall we have the total energy

V (y1, y2) =mgL(1 − cos y1) +
1

2
mL2y22.

Consider the region D given as

D ∶= (−π/2, π/2) ×R,

then V is positive definite in D with V (0,0) = 0. We saw that

d

dt
V (y1(t), y2(t)) = 0 =W (y1, y2).

Since the zero function is negative definite on D, we obtain from Thm. 6.2 that the
critical point (0,0) is stable.

For the critical point (2π,0) we transform the system to

(
w′

1

w′
2

) = (
w2

− g
L sinw1

) , for w1 = y1 − 2π, w2 = y2.

The same function

V (w1,w2) =mgL(1 − cosw1) +
1

2
mL2w2

2

satisfies

d

dt
V (w1(t),w2(t)) = 0 =W (w1(t),w2(t)),

and V is positive definite on the region D ∶= (−π/2, π/2)×R. This corresponds to the
region (3π/2,5π/2) × R for the original variables (y1, y2). Therefore, by Thm. 6.2,
(2π,0) is a stable critical point.

For instability we have the following theorem

Theorem 6.3 (Liapunov’s instabiity theorem). Consider the autonomous system

y′1 = F1(y1, y2), y′2 = F2(y1, y2) for t ∈ I,

with an isolated critical point (0,0). Suppose there is a function V that is continuous
with continuous derivatives and V (0,0) = 0. Suppose in every neighbourhood of
(0,0) there is at least one point (z1∗, z2∗) such that V (z1∗, z2∗) is positive (resp.
negative).

If there is a region D with (0,0) ∈ D and W (y1, y2) is positive (resp. negative)
definite in D, then the origin (0,0) is an unstable critical point.
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For the instability theorem there is an additional condition to check, namely
in every neighbourhood of (0,0) there is at least one point (z1∗, z2∗) such that
V (z1∗, z2∗) is positive (resp. negative). We demonstrate this with an example in-
volving the critical point (π,0) of the undamped pendulum. Recall the equations
are

(
y′1
y′2

) = (
y2

− g
L sin y1

) ,

and setting z1 = y1 − π, z2 = y2 yields

(
z′1
z′2

) = (
z2

g
L sin z1

) ,

so that the critical point (y1, y2) = (π,0) is now the critical point (z1, z2) = (0,0).
Looking at the total energy (now called U)

U(z1, z2) =mgL(1 − cos(z1 + π)) +
1

2
mL2z22 =mgL(1 + cos z1) +

1

2
mL2z22 ,

we see that U(0,0) = 2mgL ≠ 0. Therefore we cannot use U as the function V and
apply Thm. 6.3. In addition, we can compute

d

dt
U(z1(t), z2(t)) = 0,

and Thm. 6.3 requires W to be positive or negative definite (not semidefinite). Thus
we need another function. The idea is to try

V (z1, z2) = z2 sin z1.

Then, V (0,0) = 0 and

d

dt
V (z1(t), z2(t)) =

g

L
sin2 z1(t) + z2(t)

2 cos z1(t) =∶W (z1(t), z2(t)).

So for z1 ∈ (−π/4, π/4) and z2 ∈ R, the function W (z1, z2) is positive definite in
D ∶= (−π/4, π/4) ×R. The only thing remaining is to see if there are points in every
neighbourhood of the origin where the function V is positive. Note that V is always
positive in the regions on D where z1, z2 > 0 or z1, z2 < 0. Hence, this condition is
always satisfied and by Thm. 6.3 the critical point (z1, z2) = (0,0) is unstable.

Definition 6.8 (Liapunov function). The function V in Thm. 6.2 and 6.3 is known
as a Liapunov function.

Remark 6.2. In general, there is no method to construct Liapunov functions, often
a lucky guess is needed or intitution from physics.
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6.4.3 Quadratic Liapunov functions

We now study systems of equations that allows us to construct Liapunov functions
with quadratic form. I.e., V (x, y) looks like ax2+bxy+cy2. First let’s give a theorem.

Theorem 6.4. The function

V (x, y) = ax2 + bxy + cy2

for constants a, b, c satisfies the following properties

(a) V is positive definite if and only if a > 0 and 4ac − b2 > 0.

(b) V is negative definite if and only if a < 0 and 4ac − b2 > 0.

Example 6.11. Consider the system

y′1 = −y1 − y1y
2
2 = F1(y1, y2), y′2 = −y2 − y

2
1y2 = F2(y1, y2).

Then, F1(0,0) = F2(0,0) = 0 and so (0,0) is a critical point. If V is a Liapunov
function then

d

dt
V (y1(t), y2(t)) =

∂V

∂y1
(−y1 − y1y

2
2) +

∂V

∂y2
(−y2 − y

2
1y2).

We now assume V is of the form V (x, y) = ax2 + bxy + cy2. Then

∂V

∂y1
= 2ay1 + by2,

∂V

∂y2
= by1 + 2cy2,

so that

d

dt
V (y1(t), y2(t)) = − [2a(y21 + y

2
1y

2
2) + b(2y1y2 + y1y

3
2 + y

3
1y2) + 2c(y22 + y

2
1y

2
2)] .

Looking at the above expression, we should set b = 0 to remove the cubic terms
(which can be positive or negative for different vales of y1 and y2). Then, choosing
for example a = c = 0.5, we obtain

dV

dt
= −(y21 + 2y21y

2
2 + y

2
2) =∶W (y1, y2).

Now, it is easy to check that W (0,0) = 0 and W (x, y) < 0 for all (x, y) ≠ (0,0). This
shows that W is negative definite on D = R2. By Thm. 6.2 we have that (0,0) is an
asym. stable critical point.

If we use the method of locally linear systems, writing

f⃗(y⃗) = (
−y1 − y1y22
−y2 − y21y2

) ,
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we can show that y⃗′(t) = f⃗(y⃗(t)) is locally linear near the critical point (0,0). This
is due to the fact that the entires of f⃗ are twice continuously differentiable functions.
Computing the Jacobian matrix:

A = Df⃗(0⃗) = (
−1 − y22 −2y1y2
−2y1y2 −1 − y21

) ∣(0,0) = (
−1 0
0 −1

) ,

we see that the eigenvalues of A are r1 = r2 = −1. By Thm. 6.1 we deduce that
the critical point 0⃗ is asymptotically stable, which is consistent with our previous
analysis with Liapunov’s second method.

We present one more example involving stability.

Example 6.12. Consider

y′1 = −y
3
1 + 2y1y

2
2 = F1(y1, y2), y′2 = −2y21y2 − y

3
2 = F2(y1, y2).

Note that F1(0,0) = F2(0,0) = 0 and so (0,0) is a critical point. Assuming V is of
the form V (x, y) = ax2 + bxy + cy2, computing

d

dt
V (y1(t), y2(t)) = (2ay1 + by2)(2y1y

2
2 − y

3
1) + (by1 + 2cy2)(−2y21y2 − y

3
2)

= 4ay21y
2
2 + 2by1y

3
2 − 2ay41 − by

3
1y2 − 2by31y2 − 4cy21y

2
2 − by1y

3
2 − 2cy42.

We again set b = 0 to remove the cubic terms, and choose a = c = 1, so that

dV

dt
= −2y41 − 2y41 =W (y1, y2).

It is clear that W is negative definite on D = R2, and by Thm. 6.2 (0,0) is a stable
critical point.

The last example is about instability.

Example 6.13. Consider

x′ = 2x3 − y3, y′ = 2xy2 + 4x2y + 2y3,

where (0,0) is a critical point. Consider V (x, y) = ax2 + cy2, then

d

dt
V (x(t), y(t)) = 4ax4 + 4cy4 + 4cxy3 − 2axy3 + 8cx2y2.

Choosing 4c = 2a to remove the term involving xy3, for example a = 1, c = 0.5, leads
to

dV

dt
= 4x4 + 2y4 + 4x2y2 =W (x, y).

It is clear that W (0,0) = 0 and W (x, y) is positive for all (x, y) ≠ (0,0). So W
is positive definite on D = R2. However, to apply Thm. 6.3 we still need to check
that for every neighbourhood of (0,0) there is a point (x∗, y∗) where the function
V (x, y) = x2 + 1

2y
2 is positive at (x∗, y∗). However, since V (x, y) is strictly positive

for (x, y) ≠ (0,0), this is fulfilled. Thus, by Thm. 6.3 (0,0) is an unstable critical
point.
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