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5 System of first order equations

Up until now, we have been focusing on ordinary differential equations, where there
is one independent variable and one dependent variable. However, many interest-
ing problems involve multiple ordinary differential equations, leading to a system of
equations, that is still one independent variable, but now many dependent vari-
ables. Below we list some examples:

Example 5.1 (SIR model for disease spreading). Let S(t) denote the number of
susceptible individuals, I(t) be the number of infected individuals, and R(t) be the
number of recovered individuals. A person can only be in one of the above three
states, and must be susceptible, and then infected, and then recovered. It is not
possible to be infected and then susceptible, nor from recovered to infected and sus-
ceptible. Hence, we can model this with the following system of ODEs:

S′ = −βIS, I ′ = βIS − γI, R′ = γI,

where β is the contact rate and γ is the recovery rate. Note that the number of
susceptible people is always decreasing, and the number of recovered people is always
increasing. If we sum the three equations we see that

d

dt
(S + I +R) = 0,

and so the total number of people is conserved.

Example 5.2 (Lotka–Volterra equations). The Lotka–Volterra equations describe
the interaction between two species of population, which we denote by x(t) and y(t),
and are given by

x′(t) = x(a − by), y′(t) = cy(x − d),

where a and c are the growth rates of species x and y, b can be seen as a predation
rate for species x, and d is a loss rate for species y. The interaction between the two
species is modelled through the terms proportional to the product xy.
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Example 5.3 (Cucker–Smale model for flocking). Given a collection of N birds,
denote by xi the position of bird i and by vi the velocity of bird i, 1 ≤ i ≤ N . The
birds may fly around in the sky but they can communicate with each other. Let’s
encode this with a function Ψ that depends only on the relative distance between two
birds. Then the Cucker–Smale model is given as

x′i(t) = vi, v′i(t) =
1

N

N

∑
j=1

Ψ(∣xi − xj ∣)(vj − vi).

5.1 First order systems

The general system of first order equations involving n dependent variables for an
open interval I ⊂ R is

y′1(t) = F1(t, y1, . . . , yn),

y′2(t) = F2(t, y1, . . . , yn),

⋮

y′n(t) = Fn(t, y1, . . . , yn),

with initial conditions

y1(t0) = x1, . . . , yn(t0) = xn,

where t0 ∈ I, and x1, . . . , xn ∈ R are given. A solution to the above system can be
convenient written as a vector y⃗(t) = (y1(t), . . . , yn(t))⊺ where for each t ∈ I, y⃗(t)
lives in the space Rn. By running through t ∈ I, we then trace out a curve in Rn,
which we will call the trajectory, or path. The initial condition x⃗ = (x1, . . . , xn)⊺

determines the starting point of the path.

To ensure that the IVP has exactly one solution, we state the following existence
and uniqueness theorem.

Theorem 5.1 (Existence and Uniqueness). Let I be an open interval in R, and
fix constants α0, . . . , αn, β0, . . . , βn, such that t0 ∈ (α0, β0) ⊂ I Suppose the functions
F1, . . . , Fn and the partial derivatives ∂F1

∂y1
, ∂F1

∂y2
, . . . , ∂F1

∂yn
, ∂F2

∂y1
, . . . , ∂F2

∂yn
, . . . , ∂Fn

∂yn
are all

continuous in a region R defined as

R ∶= (α0, β0) × (α1, β1) × ⋅ ⋅ ⋅ × (αn, βn) ⊂ Rn+1.

Then, for x1 ∈ (α1, β1), . . . , xn ∈ (αn, βn), there is a constant h > 0 such that for all
t ∈ (t0 − h, t0 + h) ∩ (α0, β0), there is exactly one solution y⃗(t) to the IVP.

Remark 5.1. (1) If n = 1, then we have y′ = F (t, y), leading to the same assump-
tions as in the case of first order equations.

(2) We only have existence and uniqueness for a small interval (t0 − h, t0 + h)
around t0.
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Note that we can express a n-th order (nonlinear) equation as a first order system.
Indeed, given the ODE

y(n) = F (t, y, y′, . . . , y(n−1)),

setting

z1 = y, z2 = y
′, . . . , zn = y

(n−1),

then we can write down

z′1 = z2,
z′2 = z3,
⋮

z′n = y
(n) = F (t, z1, . . . , zn−1).

Definition 5.1. If each Fi, 1 ≤ i ≤ n, is linear with respect to y1, . . . , yn, then we
call the system of ODEs a linear system. Otherwise it is a nonlinear system.

We now study linear systems is greater detail. The general linear system of first
order ODEs is

y′1(t) = P11(t)y1(t) + P12(t)y2(t) + ⋅ ⋅ ⋅ + P1n(t)yn(t) + g1(t),

y′2(t) = P21(t)y1(t) + P22(t)y2(t) + ⋅ ⋅ ⋅ + P2n(t)yn(t) + g2(t),

⋮

y′n(t) = Pn1(t)y1(t) + Pn2(t)y2(t) + ⋅ ⋅ ⋅ + Pnn(t)yn(t) + gn(t),

where P11(t), . . . , Pnn(t), g1(t), . . . , gn(t) are given functions. It is more convenient
to introduce the matrix form. Denoting vectors

y⃗(t) = (y1(t), . . . , yn(t))
⊺, g⃗(t) = (g1(t), . . . , gn(t))

⊺,

and the matrix

P(t) =
⎛
⎜
⎝

P11(t) P12(t) . . . P1n(t)
⋮ ⋮ ⋱ ⋮

Pn1(t) Pn2(t) . . . Pnn(t)

⎞
⎟
⎠
,

the general system can be written as

y⃗′(t) = P(t)y⃗(t) + g⃗(t) .

Definition 5.2. A first order linear system of equations

y⃗′(t) = P(t)y⃗(t) + g⃗(t)

is called homogeneous if g⃗(t) = 0⃗, i.e., gi(t) = 0 for 1 ≤ i ≤ n. Otherwise it is called
non-homogeneous.

Theorem 5.2 (Existence and uniqueness for linear systems). Let I ⊂ R be an open
interval such that functions P11(t), . . . , Pnn(t), g1(t), . . . , gn(t) are continuous in I.
For t0 ∈ I and x1, . . . , xn ∈ R, there is exactly one solution y⃗(t) = (y1(t), . . . , yn(t))⊺

to the IVP.

In order to study first order linear systems, we make use of the convenient matrix
form. Therefore we need to recall some basic properties of matrices.
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5.2 Review of matrices

A matrix is a rectangular array of numbers. We use the notation A ∈ Rm×n to
denote a matrix with real entries of size m rows by n columns. If A is a complex-
valued matrix we write A ∈ Cm×n. Furthermore, we often write

A =
⎛
⎜
⎝

a11 a12 . . . a1n
⋮ ⋮ ⋱ ⋮

am1 am2 . . . amn

⎞
⎟
⎠

or A = (aij)1≤i≤m,1≤j≤n.

The transpose of a matrix A is denoted as A⊺ which is defined as

A⊺ = (aji)1≤j≤n,1≤i≤m ∈ Rn×m.

For a complex-valued matrix A ∈ Cm×n, we define its complex conjugate as

A = (aij)1≤i≤m,1≤j≤n.

For example

A = (
1 2 3 + i
i 4 −7

) with A⊺ =
⎛
⎜
⎝

1 i
2 4

3 + i −7

⎞
⎟
⎠
, A = (

1 2 3 − i
−i 4 −7

) .

For two matrices of the same size A,B ∈ Rm×n we can define addition and subtraction,
as well as scalar multiplication. For products of matrices, we require a matrix
A ∈ Rm×p and another B ∈ Rp×n, where the number of columns in A is equal to the
number of rows in B. Then

AB = (

p

∑
j=1
aijbjk)

1≤i≤m,1≤k≤n
.

The same also holds for complex-valued matrices. Note that in general

AB ≠ BA ,

i.e., product of matrices is not commutative.

In order to solve a linear system of equations, we can use the matrix notation to
write

⎛
⎜
⎝

a11 a12 . . . a1n
⋮ ⋮ ⋱ ⋮

am1 am2 . . . amn

⎞
⎟
⎠

⎛
⎜
⎜
⎜
⎝

x1
x2
⋮

xn

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

b1
b2
⋮

bm

⎞
⎟
⎟
⎟
⎠

as

Ax⃗ = b⃗, where A ∈ Rm×n, x⃗ ∈ Rn, b⃗ ∈ Rm.

To find the solution (if one exists) we can apply elementary row operations to

the augmented matrix (A∣⃗b) ∈ Rm×(n+1). Let us briefly recall the elementary row
operations applied to a matrix A ×Rm×n. Denoting the ith rows of A as ri ∈ Rn, we
have
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(1) interchange two rows ri↔ rj;

(2) non-zero scalar multiple of one row ri ↦ αri, α ≠ 0;

(3) adding a multiple of one row to another ri ↦ ri + αrj, α ≠ 0.

Example 5.4. Solve the linear system

x1 − 2x2 + 3x3 = 7,

−x1 + x2 − 2x3 = −5,

2x1 − x2 − x3 = 4.

Writing

A =
⎛
⎜
⎝

1 −2 3
−1 1 −2
2 −1 −1

⎞
⎟
⎠
, x⃗ =

⎛
⎜
⎝

x1
x2
x3

⎞
⎟
⎠
, b⃗ =

⎛
⎜
⎝

7
−5
4

⎞
⎟
⎠
,

we now apply elementary row operations to the augmented matrix

(A∣⃗b) =
⎛
⎜
⎝

1 −2 3
−1 1 −2
2 −1 −1

RRRRRRRRRRRRRR

7
−5
4

⎞
⎟
⎠
.

First apply r2 ↦ r1 + r2 and r3 ↦ r3 − 2r1 leads to

⎛
⎜
⎝

1 −2 3
0 −1 1
0 3 −7

RRRRRRRRRRRRRR

7
2
−10

⎞
⎟
⎠
.

Then apply r2 ↦ −r2 leads to

⎛
⎜
⎝

1 −2 3
0 1 −1
0 3 −7

RRRRRRRRRRRRRR

7
−2
−10

⎞
⎟
⎠
.

Then apply r1 ↦ r1 + 2r2 and r3 ↦ r3 − 3r2 leads to

⎛
⎜
⎝

1 0 1
0 1 −1
0 0 −4

RRRRRRRRRRRRRR

3
−2
−4

⎞
⎟
⎠
.

Then apply r3 ↦ −1
4r3 leads to

⎛
⎜
⎝

1 0 1
0 1 −1
0 0 1

RRRRRRRRRRRRRR

3
−2
1

⎞
⎟
⎠
.

Then apply r1 ↦ r1 − r3 and r2 ↦ r3 + r2 leads to

⎛
⎜
⎝

1 0 0
0 1 0
0 0 1

RRRRRRRRRRRRRR

2
−1
1

⎞
⎟
⎠
,

and so the solution is

x1 = 2, x2 = −1, x3 = 1.
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For the case m = n, i.e., A ∈ Rn×n (or A ∈ Cn×n) we call A a square matrix. A
special square matrix is the identity matrix I defined as

Ikk = 1, 1 ≤ k ≤ n, Iij = 0 1 ≤ i ≠ j ≤ n.

In particular, all the diagonal entries are one and all other entries are zero.

Definition 5.3. We say a square matrix A ∈ Rn×n is invertible if there is a matrix
B ∈ Rn×n such that

AB = BA = I .

In this case we write B = A−1. Matrices that do not have an inverse are called
singular or non-invertible.

For a square matrix A ∈ Rn×n the following statements are equivalent:

(1) A is invertible;

(2) the determinant detA is non-zero;

(3) The only solution to the problem Ax⃗ = 0⃗ is x⃗ = 0⃗.

We can also use the elementary row operations to find the inverse of a square matrix.
To do this we consider the augmented matrix (A∣I) and transform this into the
matrix (I∣B). It turns out that B will be the inverse of A.

Example 5.5. Find the inverse of the matrix

A =
⎛
⎜
⎝

1 −1 −1
3 −1 2
2 2 3

⎞
⎟
⎠
.

Let us write the augmented matrix (A∣I):

(A∣I) =
⎛
⎜
⎝

1 −1 −1
3 −1 2
2 2 3

RRRRRRRRRRRRRR

1 0 0
0 1 0
0 0 1

⎞
⎟
⎠
.

First apply r2 ↦ r2 − 3r1 and r3 ↦ r3 − 2r1 leads to

⎛
⎜
⎝

1 −1 −1
0 2 5
0 4 5

RRRRRRRRRRRRRR

1 0 0
−3 1 0
−2 0 1

⎞
⎟
⎠
.

Then apply r2 ↦ r2/2 leads to

⎛
⎜
⎝

1 −1 −1
0 1 5/2
0 4 5

RRRRRRRRRRRRRR

1 0 0
−3/2 1/2 0
−2 0 1

⎞
⎟
⎠
.
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Then apply r3 ↦ r3 − 4r2 and r1 ↦ r1 + r2 leads to

⎛
⎜
⎝

1 0 3/2
0 1 5/2
0 0 −5

RRRRRRRRRRRRRR

−1/2 1/2 0
−3/2 1/2 0

4 −2 1

⎞
⎟
⎠
.

Then apply r3 ↦ −r3/5 leads to

⎛
⎜
⎝

1 0 3/2
0 1 5/2
0 0 1

RRRRRRRRRRRRRR

−1/2 1/2 0
−3/2 1/2 0
−4/5 2/5 −1/5

⎞
⎟
⎠
.

Then apply r1 ↦ r1 − 3r3/2 and r2 ↦ r2 − −5r3/2 leads to

⎛
⎜
⎝

1 0 0
0 1 0
0 0 1

RRRRRRRRRRRRRR

7/10 −1/10 3/10
1/2 −1/2 1/2
−4/5 2/5 −1/5

⎞
⎟
⎠
.

Hence, the inverse of A is

A−1 =
⎛
⎜
⎝

7/10 −1/10 3/10
1/2 −1/2 1/2
−4/5 2/5 −1/5

⎞
⎟
⎠
.

In our study of firs order systems, we will deal with the case where the entries
of the matrix A are functions of the independent variable t, hence we can define a
matrix function of t as A(t) where

A(t) =
⎛
⎜
⎝

a11(t) a12(t) . . . a1n(t)
⋮ ⋮ ⋱ ⋮

am1(t) am2(t) . . . amn(t)

⎞
⎟
⎠
.

We say that A(t) is continuous if all the entries a11(t), . . . , amn(t) are continu-
ous functions of t. Similarly, we say A(t) is differentiable if all its entries are
differentiable functions. Then

d

dt
A(t) =

⎛
⎜
⎝

a′11(t) a′12(t) . . . a′1n(t)
⋮ ⋮ ⋱ ⋮

a′m1(t) a′m2(t) . . . a′mn(t)

⎞
⎟
⎠
.

We can also define the (indefinite) integral of A(t) as

∫ A(t) dt = (∫ aij(t) dt)
1≤i≤m,1≤j≤n

.

Example 5.6. For

A(t) = (
cos t sin t
et t

) ,

we have

A′(t) = (
− sin t cos t
et 1

) , ∫ A(t) dt = (
sin t − cos t
et 1

2t
2 ) .
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An important concept of matrix theory involves eigenvalues and eigenvectors.

Definition 5.4. For a square matrix A ∈ Rn×n, if there is a number r and a
non-zero vector x⃗ such that

Ax⃗ = rx⃗ ,

then we say r is an eigenvalue of A with corresponding eigenvector x⃗.

Note that

Ax⃗ = rx⃗⇔ (A − rI)x⃗ = 0⃗.

Therefore we can see that x⃗ is a non-zero solution to the problem

(A − rI)y⃗ = 0⃗ ,

and so

det(A − rI) = 0.

In particular, using that fact that the determinant of (A− rI) can be expressed as a
polynomial in r of degree n, which we also term as the characteristic polynomial of A,
we can find the roots of this polynomial to deduce the eigenvalues.

Definition 5.5. Let r be an eigenvalue of the matrix A ∈ Rn×n. We define the
algebraic multiplicity of r as the multiplicity of r when treated as a root of the
characteristic polynomial PA(x) = det(A−xI). The geometric multiplicity of r is
the number of linearly independent eigenvectors associated to r (i.e., the dimension
of the eigenspace for r).

Example 5.7. Let

A = (
8 −9
4 −4

) .

Then

det(A − rI) = ∣
8 − r −9

4 −4 − r
∣ = (8 − r)(−4 − r) + 36 = r2 − 4r + 4 = (r − 2)2.

Hence the eigenvalues are

r1 = r2 = 2,

i.e., the eigenvalue 2 has an algebraic multiplicity of two. To find eigenvectors, we
consider non-zero vectors x⃗ satisfying

(A − 2I)x⃗ = 0⃗⇒

⎧⎪⎪
⎨
⎪⎪⎩

8x1 − 9x2 = 2x1

4x1 − 4x2 = 2x2.
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Solving the equations implies we have 2x1 = 3x2 and so we can choose

x1 = 1, x2 = −2/3 ⇒ x⃗ = (
1

−2/3
) .

However, we do not have enough information to deduce another linearly independent
vector, thus there is only one eigenvector corresponding to the eigenvalue r = 2.
Therefore the geometric multiplicity of r = 2 is one.

In general, we have

1 ≤ geo. mult. ≤ alg. mult. .

Example 5.8. Let

A =
⎛
⎜
⎝

1 2 1
1 −1 1
2 0 −1

⎞
⎟
⎠
.

Computing for its eigenvalues, we first solve

det(A − rI) =
RRRRRRRRRRRRRR

1 − r 2 1
1 −1 − r 1
2 0 −1 − r

RRRRRRRRRRRRRR

= −(r − 3)(r + 1)2.

Hence, we see that r1 = 3 is an eigenvalue of algebraic multiplicity one while r2 =
r3 = −1 is an eigenvalue of algebraic multiplicity two. To find the corresponding
eigenvectors, we first compute

A − 3I =
⎛
⎜
⎝

−2 2 1
1 −4 1
2 0 −2

⎞
⎟
⎠
→

⎛
⎜
⎝

1 0 −1
0 1 −1/2
0 0 0

⎞
⎟
⎠

where we have used elementary row operations. Hence, if we want to find a non-zero
vector x⃗ such that

(A − 3I)x⃗ = 0⃗⇔

⎧⎪⎪
⎨
⎪⎪⎩

x1 − x3 = 0,

x2 − x3/2 = 0,

and we can choose

x1 = 1, x2 = 1/2, x3 = 1 ⇒ x⃗ =
⎛
⎜
⎝

1
1/2
1

⎞
⎟
⎠
.

Meanwhile, for the other eigenvalue r2 = r3 = −1, we see that

A + I =
⎛
⎜
⎝

2 2 1
1 0 1
2 0 2

⎞
⎟
⎠
→

⎛
⎜
⎝

1 0 1
0 1 −1/2
0 0 0

⎞
⎟
⎠
.
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Hence, for a non-zero vector y⃗ such that

(A + I)y⃗ = 0⃗⇔

⎧⎪⎪
⎨
⎪⎪⎩

y1 + y3 = 0

y2 − y3/2 = 0,

we can choose

y1 = −1, y2 = 1/2, y3 = 1 ⇒ y⃗ =
⎛
⎜
⎝

−1
1/2
1

⎞
⎟
⎠
.

Unfortunately there is no other choice of y⃗, and thus we only have one eigenvector
for the eigenvalue r = −1. Therefore the geometric multiplicity of r = −1 is one.

We now look at an example with complex eigenvalues.

Example 5.9. Let

A = (
−3 −2
4 1

) .

Computing for the eigenvalues, we solve

det(A − rI) = r2 + 2r + 5 = 0.

The quadratic formula gives

r1 = −1 + 2i, r2 = −1 − 2i.

Since both eigenvalues are distinct, the algebraic multiplicity and hence the geometric
multiplicity are one. To find the eigenvectors, consider

A − r1I = (
−2 − 2i −2

4 2 − 2i
)→ (

1 + i 1
2 1 − i

)→ (
1 + i 1

1 1/2 − 1/2i
)→ (

1 + i 1
0 0

) .

Hence, if

(A − r1I)x⃗1 = 0⃗⇒ (1 + i)x1 + x2 = 0,

we can choose

x1 = −1, x2 = 1 + i ⇒ x⃗ = (
−1

1 + i
) = (

−1
1

) + i(
0
1

) ,

that is the eigenvector corresponding to a complex eigenvalue is also complex-valued.
Note that we do not need to repeat the computations in order to deduce the eigen-
vector corresponding to r2, since A is a real-valued matrix we see that

(A − r1I) = A − r2I.

Hence, if x⃗ is an eigenvector corresponding to r1, we have

0⃗ = (A − r1I)x⃗ = (A − r2I)x⃗,

and we can take the eigenvector y⃗ corresponding to r2 as the complex-conjugate of
x⃗, i.e.,

y⃗ = (
−1

1 − i
) = (

−1
1

) − i(
0
1

) .

The takeaway message is that complex eigenvalues and eigenvectors occur in conjugate pairs.
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Exercise: Find the eigenvalues and eigenvectors of these matrices

A = (
5 3
−1 1

) , A = (
−3 −5
3/4 1

) , A = (
1 i
−i 1

) .

5.3 Basic theory of systems of first order linear equations

The general first order linear system is

y⃗′(t) = P(t)y⃗(t) + g⃗(t),

for given g⃗(t) = (g1(t), . . . , gn(t))⊺ and P(t) is a square matrix of functions

P(t) =
⎛
⎜
⎝

P11(t) . . . P1n(t)
⋮ ⋱ ⋮

Pn1(t) . . . Pnn(t)

⎞
⎟
⎠
.

Recall that

(a) Second order equations → 2 L.I. solutions to the homogeneous equation;

(b) nth order equations → n L.I. solutions to the homogeneous equation;

and so for a system of n first order equations, we expect n L.I. solutions to the
homogeneous system.

Let us use the following notation:

y⃗j(t) = j-th solution, yij(t) = i-th component of the j-th solution .

This means that

y⃗j(t) =

⎛
⎜
⎜
⎜
⎝

y1j(t)
y2j(t)
⋮

ynj(t)

⎞
⎟
⎟
⎟
⎠

.

Theorem 5.3 (Principle of superposition). Let y⃗1 and y⃗2 be two solutions to the
homogeneous system

y⃗′(t) = P(t)y⃗(t) (5.1)

then any linear combination

φ⃗(t) = c1y⃗1(t) + c2y⃗2(t)

is also a solution for any c1, c2 ∈ R.

The natural question is: Can every solution to the homogeneous system (5.1)
be written as a linear combination? The answer is YES, with some analogue of
Wronskian for system of equations.
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Definition 5.6 (Wronskian). Let y⃗1(t), . . . , y⃗n(t) be n solutions to the homogeneous
system (5.1). We define the matrix

X(t) ∶=

⎛
⎜
⎜
⎜
⎝

y11(t) y12(t) . . . y1n(t)
y21(t) y22(t) . . . y2n(t)
⋮ ⋮ ⋱ ⋮

yn1(t) yn2(t) . . . ynn(t)

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎝

∣ ∣ . . . ∣

y⃗1(t) y⃗2(t) . . . y⃗n(t)
∣ ∣ . . . ∣

⎞
⎟
⎠
,

where the i-th column of X is the vector y⃗i(t). Then we set the Wronskian W (y⃗1, . . . , y⃗n)[t]
to be

W (y⃗1, . . . , y⃗n)[t] ∶= detX(t).

Remark 5.2. Note that this definition of Wronskian does not involve derivatives!
Furthermore,

W ≠ 0⇔ detX ≠ 0⇔ {y⃗1, . . . , y⃗n} are L.I. .

Unlike for scalar equations, where we have W ≠ 0 ⇒ L.I., but the converse is in
general not true unless the functions are solutions to a homogeneous equation, in
the system case, we have W ≠ 0⇔ L.I..

Theorem 5.4. Let y⃗1(t), . . . , y⃗n(t) be n solutions to the homogeneous system (5.1)
defined on an open interval I. Then, y⃗1(t), . . . , y⃗n(t) are linearly independent on
the interval I if and only if the Wronskian W (y⃗1, . . . , y⃗n)[t] is non-zero for t ∈ I.
In such a case we say that {y⃗1(t), . . . , y⃗n(t)} forms a fundamental set of solutions,
and any solution φ⃗(t) to the homogeneous system (5.1) can be expressed as a linear
combination:

φ⃗(t) = c1y⃗1(t) + ⋅ ⋅ ⋅ + cny⃗n(t),

for constants c1, . . . , cn ∈ R in exactly one way. That is, the constants c1, . . . , cn
are uniquely determined.

Proof. The aim is to show if y⃗1, . . . , y⃗n are linearly independent (or equivalently
W (y⃗1, . . . , y⃗n) ≠ 0), then any solution can be written as a linear combination of
y⃗1, . . . , y⃗n. Let φ⃗ be any solution to the homogeneous system (5.1) for t ∈ I, where I
is an open interval. Let t0 ∈ I and denote the vector

ξ⃗ ∶= φ⃗(t0) = (ξ1, . . . , ξn)
⊺.

Then, we find values c1, . . . , cn ∈ R that satisfies

c1y⃗1(t0) + ⋅ ⋅ ⋅ + cny⃗n(t0) = ξ⃗,

or equivalently

c1y11(t0) + ⋅ ⋅ ⋅ + cny1n(t0) = ξ1,

⋮

c1yn1(t0) + ⋅ ⋅ ⋅ + cnynn(t0) = ξn
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or also equivalently

⎛
⎜
⎝

y11(t0 . . . y1n(t0)
⋮ ⋱ ⋮

yn1(t0) . . . ynn(t0)

⎞
⎟
⎠

⎛
⎜
⎝

c1
⋮

cn

⎞
⎟
⎠
=
⎛
⎜
⎝

ξ1
⋮

ξn

⎞
⎟
⎠
.

As the Wronskian is not zero at t0, the matrix is invertible and hence there is a
unique solution (c∗1, . . . , c∗n)⊺ to the above problem.

Now define a new function η⃗ by

η⃗(t) = c∗1 y⃗1(t) + ⋅ ⋅ ⋅ + c
∗
ny⃗n(t) ∀t ∈ I.

It is clear that η⃗(t0) = ξ⃗ = φ⃗(t0). Hence, both η⃗ and φ⃗ are solutions to the IVP

y⃗′(t) = P(t)y⃗(t), y⃗(t0) = ξ⃗.

By uniqueness we must have η⃗ = φ⃗ and thus

φ⃗(t) = c∗1 y⃗1(t) + ⋅ ⋅ ⋅ + c
∗
ny⃗n(t) ∀t ∈ I.

Since we have an analogue of the Wronskian for systems of equations, we should
expect an analogue of Abel’s theorem as well. For systems of equations, this is called
Liouville’s formula.

Theorem 5.5 (Liouville’s formula). Let y⃗1, . . . , y⃗n be n solutions to the homogeneous
equation (5.1) in the open interval I. Then, the Wronskian is given by

W (y⃗1, . . . , y⃗n)[t] = c exp(∫ tr(P(t)) dt) ,

where the trace of a matrix A ∈ Rn×n is defined as

tr(A) ∶=
n

∑
i=1
aii (sum of the diagonal entries),

and c is a constant not depending on t ∈ I. Consequently, the Wronskian is either
always zero for t ∈ I or never zero for t ∈ I.

Proof. We will prove this for the case n = 2: Let y⃗1, y⃗2 be two solutions to the
homogeneous system (5.1), i.e.,

y⃗′(t) = P(t)y⃗(t), P(t) ∈ R2×2 for t ∈ I.

Then, the Wronskian is

W (y⃗1, y⃗2)[t] = ∣
y11(t) y12(t)
y21(t) y22(t)

∣ = y11(t)y22(t) − y12(t)y21(t).

13



Taking the derivative leads to

d

dt
W [t] = y′11(t)y22(t) − y

′
12(t)y21(t) + y11(t)y

′
22(t) − y12(t)y

′
21(t)

= ∣
y′11(t) y′12(t)
y21(t) y22(t)

∣ + ∣
y11(t) y12(t)
y′21(t) y′22(t)

∣

= ∣
P11y11 + P12y21 P11y12 + P12y22

y21(t) y22(t)
∣ + ∣

y11(t) y12(t)
P21y11 + P22y21 P21y12 + P22y22

∣

= (P11 + P22)(y11y22 − y12y21) = (P11 + P22)W [t],

where we have used from the fact that y⃗1, y⃗2 solve y⃗′(t) = P(t)y⃗(t) to deduce

(
y′11
y′21

) = (
P11y11 + P12y21
P21y11 + P22y21

) , (
y′12
y′22

) = (
P11y12 + P12y22
P21y12 + P22y22

) .

This implies we have

d

dt
W [t] = (P11 + P22)W [t] = tr(P(t))W [t].

Next, the question of “does at least one fundamental set of solutions for systems
of equations always exists” is answered.

Theorem 5.6 (Existence of at least one fundamental set of solutions). Let

e⃗i =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
⋮

0
1
0
⋮

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where the entry 1 appears in the i-th row, and let y⃗i be the unique solution to the
IVP

y⃗′(t) = P(t)y⃗(t) for t ∈ I,

y⃗(t0) = e⃗i,

for t0 ∈ I. Then, the functions y⃗1(t), . . . , y⃗n(t) form a fundamental set of solutions
to the homogeneous system y⃗′(t) = P(t)y⃗(t).

Proof. Simply compute the Wronskian at t0:

W (y⃗1, . . . , y⃗n)[t0] = detI = 1 ≠ 0.

14



Note that once a fundamental set of solutions has been found, we can construct
other fundamental set of solutions by forming linear combinations of the vectors
from the first set - however one must also ensure that the new set of functions are
linearly independent.

Finally, just as for second order equations, a system with real coefficients may
give rise to complex-valued solutions.

Theorem 5.7. If y⃗(t) = u⃗(t)+iv⃗(t) is a complex-valued solution to the homogeneous
system (5.1), where the entries of P(t) are real-valued functions, and the vectors
u⃗(t) and v⃗(t) are also real-valued, then u⃗(t) and v⃗(t) are both solutions to the
homogeneous system.

Summary: A set of n linearly independent solutions y⃗1, . . . , y⃗n to y⃗′(t) = P(t)y⃗(t)
forms a fundamental set of solutions (which at least one set always exists) and any
solution φ⃗ to the homogeneous system can be written as a unique linear combination
of y⃗1, . . . , y⃗n.

We now turn to the case of constant coefficients, i.e., P(t) = A, where A is a
square matrix with real, constant coefficients (not functions of t), and our goal is to
derive explicit formulae for y⃗1, . . . , y⃗n.

5.4 Homogeneous system with constant coefficients

We now focus on systems of the form

y⃗′(t) = Ay⃗(t), t ∈ I, (5.2)

where A ∈ Rn×n. There are three special cases which we can already deal with.

(1) In the case n = 1, then A is just a scalar, i.e., A = a ∈ R, then (5.2) becomes

y′(t) = ay(t)⇒ y(t) = ceat, c ∈ R.

(2) A is a diagonal matrix:

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

r1 0 . . . 0
0 r2 . . . 0
0 0 . . . 0
⋮ ⋮ ⋱ ⋮

0 0 . . . rn

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

for constants r1, . . . , rn ∈ R. Then (5.2) reduces to

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y′1(t) = r1y1(t),

y′2(t) = r2y2(t),

⋮

y′n(t) = rnyn(t),

⇒ yi(t) = cie
rit, ci ∈ R, 1 ≤ i ≤ n.
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(3) A is a Jordan matrix. A Jordan block J is a matrix in Rk×k, where 1 ≤

k ≤ n is of the form

J =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

r 1 0 . . . 0
0 r 1 . . . 0
⋮ ⋱ ⋱ ⋱ 0
0 0 . . . r 1
0 0 0 . . . r

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

that is, the main diagonal is a constant r ∈ R, and immediately above the
main diagonal is a diagonal of ones. The rest of the matrix entries is zero. We
say that the matrix A is in Jordan normal form if there are Jordan blocks
J1, . . . , Jm, where each Ji ∈ Rki×ki and k1 + ⋅ ⋅ ⋅ + km = n, such that A is of the
form

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

J1 O O O O

O J2 O O O

O O J3 O O

⋮ ⋱ ⋱ ⋱ ⋮

O O O O Jm

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

For example, let

J1 = (
2 1
0 2

) , J2 = (3), J3 = (
1 1
0 1

) ,

then

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 1 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 1 1
0 0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

To solve the system

y⃗′(t) = Jy⃗(t), J =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

r 1 0 . . . 0
0 r 1 . . . 0
⋮ ⋱ ⋱ ⋱ 0
0 0 . . . r 1
0 0 0 . . . r

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Rn×n

writing out the equations gives

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′n(t) = ryn(t),

y′n−1(t) = ryn−1(t) + yn(t),
y′n−2(t) = ryn−2(t) + yn−1(t),

⋮

y′2(t) = ry2(t) + y3(t),

y′1(t) = ry1(t) + y2(t).

In particular, we can solve in reverse order, first compute yn, then yn−1, then
yn−2, and so on.
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Exercise. Solve y⃗′(t) = Ay⃗(t) when A is of the form

A = (
7 1
0 7

) , A =
⎛
⎜
⎝

1 1 0
0 1 0
0 0 3

⎞
⎟
⎠
.

What about a general matrix A ∈ Rn×n? The idea is to try

y⃗(t) = ξ⃗ert,

where ξ⃗ is a constant vector (not depending on t) and r ∈ C. We have to determine
the constant r and the constant vector ξ⃗ to obtain a solution.

Substituting this function into the equation yields

0⃗ = y⃗′(t) −Ay⃗(t) = ert(rξ⃗ −Aξ⃗) = ert(A − rI)ξ⃗.

Since the exponential term is never zero, we see that for ξ⃗ert to be a solution to the
homogeneous system, we require

(A − rI)ξ⃗ = 0⃗ ,

i.e., the constant r should be an eigenvalue of the matrix A with corresponding

eigenvector ξ⃗.

5.4.1 Two-by-two matrices

Let A ∈ R2×2 be a two-by-two matrix with real entries. Then, A has two eigenvalues.
What are the possibilities for the eigenvalues r1 and r2?

(1) r1, r2 ∈ R, r1 ≠ r2 - real and distinct;

(2) r1, r2 ∈ C, r1 = λ + iµ, λ,µ ∈ R with r2 = λ − iµ - complex conjugate pair;

(3) r1 = r2 ∈ R - repeated and real.

Note that it is not possible to have

• r1 ∈ R, r2 ∉ R;

• r1 = r2 ∉ R,

since complex eigenvalues always occur in conjugate pairs, and if r1 = r2 with r1, r2
complex, this implies that λ + iµ = λ − iµ and so µ = 0 and r1 = r2 = λ ∈ R.
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Case 1 - Real distinct eigenvalues. Let ξ⃗1 and ξ⃗2 be the corresponding eigen-
vectors to r1 and r2. Note that ξ⃗1 and ξ⃗2 are linearly independent. Then, we can
compute the Wronskian to see that for the functions y⃗1(t) = ξ⃗1er1t and y⃗2(t) = ξ⃗2er2t,

W (y⃗1, y⃗2)[t] = ∣
ξ11er1t ξ12er2t

ξ21er1t ξ22er2t
∣ = er1t ∣

ξ11 ξ12er2t

ξ21 ξ22er2t
∣ = e(r1+r2)t ∣

ξ11 ξ12
ξ21 ξ22

∣ ≠ 0.

for any t ∈ I. Hence, by Theorem 5.4, the general solution to the homogeneous
system (5.2) is

y⃗(t) = c1e
r1tξ⃗1 + c2e

r2tξ⃗2 .

Example 5.10. For

A = (
1 1
4 1

)

with eigenvalues and corresponding eigenvectors

r1 = 3, ξ1 = (
1
2

) , r2 = −1, ξ2 = (
1
−2

) ,

the general solution is

y⃗(t) = c1e
3t (

1
2

) + c2e
−t (

1
−2

) .

Case 2 - Comples conjugate eigenvalues. Let r1 = λ + iµ, with λ,µ ∈ R and
corresponding eigenvector ξ⃗1 = u⃗ + iv⃗. We expect that

x⃗1(t) = (u⃗ + iv⃗)e(λ+iµ)t, x⃗2(t) = (u⃗ − iv⃗)e(λ−iµ)t

are solutions to the homogeneous system (5.2). But the disadvantage of using x⃗1
and x⃗2 is that they are complex-valued. Therefore, we rewrite

x⃗1 = (u⃗ + iv⃗)eλt(cos(µt) + i sin(µt))

= eλt[u⃗ cos(µt) − v⃗ sin(µt)] + ieλt[u⃗ sin(µt) + v⃗ cos(µt)].

Using Theorem 5.7 we infer that the real and imaginary parts of x⃗1 are also solutions.
Hence, we define

y⃗1(t) = e
λt(u⃗ cos(µt) − v⃗ sin(µt)), y⃗2(t) = e

λt(u⃗ sin(µt) + v⃗ cos(µt)).

Since the real and imaginary parts of a complex eigenvector are linearly independent,
we can check that the Wronskian for y⃗1 and y⃗2 is non-zero. Then, by Theorem 5.4
we see that the general solution to the homogeneous system (5.2) is

y⃗(t) = eλt [cos(µt)[c1u⃗ + c2v⃗] + sin(µt)[c2u⃗ − c1v⃗]] .
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Example 5.11. For

A = (
−3 −2
4 1

)

with eigenvalues r1 = r2 and corresponding eigenvectors x⃗1 = x⃗2:

r1 = −1 + 2i, ξ⃗1 = (
−1
1

) + i(
0
1

) ,

the general solution is

y⃗(t) = c1e
−t (cos(2t)(

−1
1

) − sin(2t)(
0
1

))

+ c2e
−t (sin(2t)(

−1
1

) + cos(2t)(
0
1

)) .

Case 3 - Repeated real eigenvalues. If r1 = r2, then we have an eigenvalue
with algebraic multiplicity of two. We need to divide our analysis into two subcases:

(1) The geometric multiplicity is also two, which implies there are two linearly
independent eigenvectors ξ⃗1, ξ⃗2 corresponding to r1 = r2 =∶ q. Then, going back
to Case 1, the general solution to the homogeneous system (5.2) is

y⃗(t) = c1e
qtξ⃗1 + c2e

qtξ⃗2.

(2) If the geometric multiplicity is one, then there is only one eigenvector ξ⃗ corre-
sponding to the eigenvalue q. We know one solution is

y⃗1 = ξ⃗e
qt,

what about a second solution that is linearly independent? As with second
order equations, let’s try

z⃗(t) = tξ⃗eqt.

Differentiating and plugging this into the homogeneous system (5.2) leads to

z⃗′(t) −Az⃗(t) = ξ⃗(qteqt + eqt) −Aξ⃗teqt = (ξ⃗q −Aξ⃗)teqt + ξ⃗eqt.

We observe there are two terms: one involving the coefficient teqt and the other
involving just the coefficient eqt. Since we want z⃗ to be a solution, both terms
must vanish. Hence, we require

Aξ⃗ = qξ⃗, ξ⃗ = 0⃗.

The first condition amounts to saying ξ⃗ is an eigenvector for q, which we
already have by definition, but the second condition leads to a contradiction.
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Therefore, we deduce that a solution to the homogeneous system (5.2) cannot
be of the form tξ⃗eqt.

To remedy this, since computing z⃗′(t) − Az⃗ leads to an expression involving
teqt and eqt, we should try

w⃗(t) = ξ⃗teqt + η⃗eqt,

for some constant vector η⃗ to be determined. Then, computing w⃗′(t) −Aw⃗(t)
gives

w⃗′(t) −Aw⃗(t) = teqt(qξ⃗ −Aξ⃗) + eqt(qη⃗ −Aη⃗ + ξ⃗).

Hence, for w⃗ to be a solution we need

Aξ⃗ = qξ⃗, (A − qI)η⃗ = ξ⃗ .

Since ξ⃗ is an eigenvector corresponding to q, the first condition is satisfied.
Now, suppose the vector η⃗ exists such that

(A − qI)η⃗ = ξ⃗,

then we have two solutions

y⃗1(t) = ξ⃗e
qt, y⃗2(t) = tξ⃗e

qt + η⃗eqt .

Computing the Wronskian gives

W (y⃗1, y⃗2)[t] = e
qt ∣

ξ1 tξ1 + η1
ξ2 tξ2 + η2

∣ = eqt ∣
ξ1 η1
ξ2 η2

∣ ,

and so the Wronskian is non-zero if and only if ξ⃗ and η⃗ are linearly independent.
If so, then by Theorem 5.4, the general solution is

y⃗(t) = c1ξ⃗e
qt + c2(tξ⃗e

qt + η⃗eqt) .

In the above second case for repeated real eigenvalues, there are still two unre-
solved issues:

• Does η⃗ such that (A − qI)η⃗) = ξ⃗ exists?

• Are ξ⃗ and η⃗ linearly independent?

First, let us answer the second question. Suppose there are constants α1, α2 such
that α1ξ⃗ +α2η⃗ = 0⃗. Since A ≠ qI (otherwise η⃗ would not exist), applying A− qI leads
to

0⃗ = α1(A − qI)ξ⃗ + α2(A − qI)η⃗ = α2ξ⃗,
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since ξ⃗ is an eigenvector corresponding to q. This implies that α2 = 0, since ξ⃗ is
non-zero. Then, going back we see that

α1ξ⃗ = 0⃗⇒ α1 = 0.

Hence, if η⃗ exists, we see that ξ⃗ and η⃗ are linearly independent.

For the first question, take another vector v⃗ that is not a constant multiple of the
eigenvector ξ⃗. Then, since ξ⃗ is a vector in R2, we see that v⃗ and ξ⃗ must be linearly
independent (if v⃗ is not a constant multiple of ξ⃗), and hence they also form a basis
of R2. So every vector x⃗ ∈ R2 can be written as a linear combination of v⃗ and ξ⃗.

Define the vector w⃗ = (A − qI)v⃗. Then, we can find constants α,β ∈ R such that

w⃗ = αv⃗ + βξ⃗.

Now apply A − qI to both sides gives

(A − qI)w⃗ = α(A − qI)v⃗ + β(A − qI)ξ⃗ = α(A − qI)v⃗ = αw⃗,

since ξ⃗ is an eigenvector of A. Rearranging gives

Aw⃗ = (q + α)w⃗,

and so w⃗ is an eigenvector corresponding to eigenvalue α+ q. But, since A has a re-
peated eigenvalue q, there is no other possible eigenvalues and hence α must be zero.
From this, we see that

w⃗ = βξ⃗, β ≠ 0.

that is w⃗ is parallel to ξ⃗. Recalling the definition of w⃗, we see that

w⃗ = (A − qI)v⃗ = βξ⃗,

and if we set η⃗ = 1
β v⃗, we see that

(A − qI)η⃗ = ξ⃗

as required.

Example 5.12. For

A = (
1 −1
1 3

) ,

the eigenvalues are r1 = r2 = q = 2, i.e., algebraic multiplicity is two, while the
eigenvector corresponding to q is

ξ⃗ = (
1
−1

) ,
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and so the geometric multiplicity is one. We now need to find a vector η⃗ such that

(A − 2I)η⃗ = ξ⃗.

Computing A − 2I gives

(
−1 −1
1 1

)(
η1
η2

) = (
1
−1

)⇒ −η1 − η2 = 1.

We can take η1 = 0 and η2 = −1, leading to the general solution

y⃗(t) = c1e
2t (

1
−1

) + c2 (te
2t (

1
−1

) + e2t (
0
−1

)) .

Definition 5.7. Given a real square matrix A ∈ Rn×n with eigenvalue q and corre-
sponding eigenvector ξ⃗. We say a vector η⃗ is a generalized eigenvector (of rank
1) corresponding to the eigenvalue q if

(A − qI)η⃗ = ξ⃗ ,

or equivalently

(A − qI)2η⃗ = 0⃗ .

With this the theory for the case A ∈ R2×2 is complete. But what about for the
general case A ∈ Rn×n. There are some specific subcases that are easily generalizable.

(a) If all the eigenvalues are real and distinct, r1 ≠ r2 ≠ ⋅ ⋅ ⋅ ≠ rn, then there are
n linearly independent eigenvectors ξ⃗1, . . . , ξ⃗n corresponding to r1, . . . , rn. We
see that the general solution is

y⃗(t) = c1ξ⃗1e
r1t + ⋅ ⋅ ⋅ + cnξ⃗ne

rnt .

(b) If there are k pairs of complex conjugate eigenvalues r1 = r2, . . . , r2k−1 = r2k,
and the rest r2k+1, . . . , rn are real and distinct, then we still have n linearly in-
dependent eigenvectors, where (u⃗j, v⃗j) for 1 ≤ j ≤ k are the real and imaginary

parts of the eigenvectors corresponding to r1, . . . , r2k, and ξ⃗2k+1, . . . , ξ⃗n are the
eigenvectors corresponding to r2k+1, . . . , rn. Then, the general solution is

y⃗(t) = c2k+1ξ⃗2k+1er2k+1t + ⋅ ⋅ ⋅ + cnξ⃗nernt

+ c1e
λ1t(u⃗1 cos(µ1t) − v⃗1 sin(µ1t))

+ c2e
λ1t(u⃗1 sin(µ1t) + v⃗1 cos(µ1t))

+ . . . .

(c) If all repeated eigenvalues have geometric multiplicity = algebraic multiplicity,
then a total of n linearly independent eigenvectors can be found. In this case
the general solution is the same as in Case (a).

If there is a repeated eigenvalue q with geometric multiplicity strictly less than its
algebraic multiplicity, then the theory is more complicated. To illustrate this, we
now study the case where A ∈ R3×3.
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5.4.2 Three-by-three matrices

When n = 3, there are more combinations of possible eigenvalues than in the case
n = 2. We just focus on the case where we have a repeated eigenvalue q with geo.
mult. < alg. mult., since for the case geo. mult. = alg. mult. we know what to do.
Then the following situations are possible:

(1) geo. mult. = 1 < alg. mult. = 3;

(2) geo. mult. = 2 < alg. mult. = 3;

(3) geo. mult. = 1 < alg. mult. = 2;

Note that Case 3 can be treated as in Section 5.4.1 as the alg. mult. is two, and
so there remaining eigenvalue must be distinct from q. We will omit this and focus
on the first two cases.

Case 1. Since geo. mult. is one, there is only one eigenvector ξ⃗ ∈ R3 corresponding
to the repeated eigenvalue q with alg. mult. three. As we have seen in the 2 × 2
theory, one solution is y⃗1(t) = ξ⃗eqt. Let’s consider a generalized eigenvector η⃗ ∈ R3

satisfying (A − qI)η⃗ = ξ⃗, then we have a second solution y⃗2(t) = tξ⃗eqt + η⃗eqt. What
about a third solution?

Let’s try

w⃗(t) =
t2

2
ξ⃗eqt + tη⃗eqt + θ⃗eqt,

for some constant vector θ⃗ ∈ R3. If w⃗ solves the homogeneous system (5.2) then we
must have

w⃗′(t) −Aw⃗(t) = eqt((qI −A)θ⃗ + η⃗) = 0⃗,

that is

(A − qI)θ⃗ = η⃗ .

Hence, to obtain three linearly independent solutions to the homogeneous system
(5.2) we have to compute for vectors ξ⃗, η⃗, θ⃗ such that

(A − qI)ξ⃗ = 0⃗, (A − qI)η⃗ = ξ⃗, (A − qI)θ⃗ = η⃗.

Note that the latter two conditions are equivalent to

(A − qI)2η⃗ = 0⃗, (A − qI)3θ⃗ = 0⃗,

and so we see that θ⃗ is a generalized eigenvector of rank 2 corresponding to the
eigenvalue q.

We now check if ξ⃗, η⃗, θ⃗ are linearly independent. Suppose there are constants
α,β, γ such that

αξ⃗ + βη⃗ + γθ⃗ = 0⃗.
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Applying (A − qI) gives

βξ⃗ + γη⃗ = 0⃗,

and applying (A − qI) once more gives

γξ⃗ = 0⃗.

Since ξ⃗ is a non-zero eigenvector, we see that γ must be zero, and from this we can
also deduce that α = β = 0.

By Theorem 5.4 we have that the general solution is

y⃗(t) = c1ξ⃗e
qt + c2 (tξ⃗e

qt + η⃗eqt) + c3 (
t2

2
ξ⃗eqt + tη⃗eqt + θ⃗eqt) .

Case 2. Since the geo. mult. is two, we have two linearly independent eigenvectors
ξ⃗1 and ξ⃗2 corresponding to the repeated eigenvalue q. This leads to two solutions

y⃗1(t) = ξ⃗1e
qt, y⃗2(t) = ξ⃗2e

qt.

We need to construct a third solution that is linearly independent to y⃗1 and y⃗2. If
we have w⃗(t) = θ⃗teqt + η⃗eqt is a solution, then we need

(A − qI)θ⃗ = 0⃗, (A − qI)η⃗ = θ⃗.

Here, we can choose θ⃗ as a linear combination of the eigenvectors ξ⃗1 and ξ⃗2, such
that there is a solution η⃗ to (A− qI)η⃗ = θ⃗. We now demonstrate in an example why
sometimes choosing θ⃗ = ξ⃗1 or θ⃗ = ξ⃗2 may not yield the existence of the generalized
eigenvector η⃗.

Example 5.13. For

A =
⎛
⎜
⎝

4 6 −15
1 3 −5
1 2 −4

⎞
⎟
⎠
,

the characteristic equation is

PA(r) = (r − 1)3⇒ r1 = r2 = r3 = q = 1,

i.e., we have a repeated eigenvalue q = 1 with alg. mult. three. Computing A − I
gives

A − I =
⎛
⎜
⎝

3 6 −15
1 2 −5
1 2 −5

⎞
⎟
⎠
→

⎛
⎜
⎝

1 2 −5
0 0 0
0 0 0

⎞
⎟
⎠
,

after applying elementary row operations. So if there is a vector x⃗ such that (A−I)x⃗ =
0⃗, this is equivalent to solving

x1 + 2x2 − 5x3 = 0.
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We can choose

x1 = −2, x2 = 1, x3 = 0⇒ ξ⃗1 =
⎛
⎜
⎝

−2
1
0

⎞
⎟
⎠
,

x1 = 5, x2 = 0, x3 = 1⇒ ξ⃗2 =
⎛
⎜
⎝

5
0
1

⎞
⎟
⎠
.

We have two linearly independent eigenvectors and so geo. mult. is two. We now
choose θ⃗ = ξ⃗1 and try to compute for η⃗:

(A − I)η⃗ =
⎛
⎜
⎝

−2
1
0

⎞
⎟
⎠
⇒

⎛
⎜
⎝

3 6 −15
1 2 −5
1 2 −5

⎞
⎟
⎠

⎛
⎜
⎝

η1
η2
η3

⎞
⎟
⎠
=
⎛
⎜
⎝

−2
1
0

⎞
⎟
⎠
.

Writing the matrix problem as a system of linear equations, we see that there is no
solution that will satisfy the above equation. Since we would have

η1 + 2η2 − 5η3 = 1,

η1 + 2η2 − 5η3 = 0.

Similarly, choose θ⃗ = ξ⃗2, we also find that there is no solution η⃗ to the problem
(A − I)η⃗ = ξ⃗2.

So how do we fix this? Recall, θ⃗ and η⃗ satisfy the equations

(A − I)θ⃗ = 0⃗, (A − qI)η⃗ = θ⃗⇒ (A − qI)2η⃗ = 0⃗.

Let’s compute for η⃗ first and then try and determine θ⃗. We see that

(A − I)2 =
⎛
⎜
⎝

0 0 0
0 0 0
0 0 0

⎞
⎟
⎠

and so we can choose η⃗ as any non-zero vector, for example

η⃗ =
⎛
⎜
⎝

1
0
0

⎞
⎟
⎠
.

Then,

θ⃗ = (A − I)η⃗ =
⎛
⎜
⎝

3
1
1

⎞
⎟
⎠
.

We now check if (A − I)θ⃗ = 0⃗:

⎛
⎜
⎝

3 6 −15
1 2 −5
1 2 −5

⎞
⎟
⎠

⎛
⎜
⎝

3
1
1

⎞
⎟
⎠
=
⎛
⎜
⎝

0
0
0

⎞
⎟
⎠
,
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and so the desired vectors are

θ⃗ =
⎛
⎜
⎝

3
1
1

⎞
⎟
⎠
, η⃗ =

⎛
⎜
⎝

1
0
0

⎞
⎟
⎠
.

Let us note that

θ⃗ = ξ⃗1 + ξ⃗2

and so θ⃗ is a linear combination of ξ⃗1 and ξ⃗2. Then, the general solution is

y⃗(t) = c1
⎛
⎜
⎝

−2
1
0

⎞
⎟
⎠
et + c2

⎛
⎜
⎝

5
0
1

⎞
⎟
⎠
et + c3

⎛
⎜
⎝

⎛
⎜
⎝

3
1
1

⎞
⎟
⎠
tet +

⎛
⎜
⎝

1
0
0

⎞
⎟
⎠
et
⎞
⎟
⎠
.

Remark 5.3. The above example shows that choosing θ⃗ = ξ⃗1 or ξ⃗2 may not give the
existence of η⃗ needed to construct the third linearly independent solution. We may
have to consider θ⃗ as a linear combination of ξ⃗1 and ξ⃗2. Furthermore, it may be
easier by first computing (A− qI)2 and finding η⃗, then set θ⃗ ∶= (A− qI)η⃗. Afterwards
we must check that (A − qI)θ⃗ = 0⃗.

Example 5.14. For

A =
⎛
⎜
⎝

−7 −5 −3
2 −2 −3
0 1 0

⎞
⎟
⎠

the characteristic polynomial is

PA(r) = (r + 3)3⇒ r1 = r2 = r3 = −3.

Furthermore,

A + 3I =
⎛
⎜
⎝

−4 −5 −3
2 1 −3
0 1 3

⎞
⎟
⎠
→

⎛
⎜
⎝

2 1 −3
0 1 3
0 0 0

⎞
⎟
⎠

after applying elementary row operations. Then

(A + 3I)x⃗ = 0⃗⇒ 2x1 = 6x3, x2 + 3x3 = 0.

We can choose

x1 = 3, x2 = 3, x3 = 1 ⇒ ξ⃗ =
⎛
⎜
⎝

3
−3
1

⎞
⎟
⎠
.

Hence the alg. mult. is three but the geo. mult. is one. We have to find vectors η⃗
and θ⃗ such that

(A + 3I)η⃗ = ξ⃗, (A + 3I)θ⃗ = η⃗.
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Computing:

⎛
⎜
⎝

−4 −5 −3
2 1 −3
0 1 3

⎞
⎟
⎠

⎛
⎜
⎝

η1
η2
η3

⎞
⎟
⎠
=
⎛
⎜
⎝

3
−3
1

⎞
⎟
⎠
,

we obtain simplified equations

η1 − 3η3 = −2, η1 + η2 = −1.

Hence, we can take

η⃗ =
⎛
⎜
⎝

0
−1
2/3

⎞
⎟
⎠
.

Then, we now seek θ⃗ such that

⎛
⎜
⎝

−4 −5 −3
2 1 −3
0 1 3

⎞
⎟
⎠

⎛
⎜
⎝

θ1
θ2
θ3

⎞
⎟
⎠
=
⎛
⎜
⎝

0
−1
2/3

⎞
⎟
⎠
.

We again get simplified equations

2θ1 − 6θ3 = −5/3, 2θ1 + 2θ2 = −1/3.

We can take

θ⃗ =
⎛
⎜
⎝

−1/6
0

2/9

⎞
⎟
⎠
.

Then, we see that

RRRRRRRRRRRRRR

∣ ∣ ∣

ξ⃗ η⃗ θ⃗
∣ ∣ ∣

RRRRRRRRRRRRRR

= −
1

2
≠ 0,

and so ξ⃗, η⃗, θ⃗ are linearly independent, and the general solution i

y⃗(t) = e−3t
⎛
⎜
⎝

3
−3
1

⎞
⎟
⎠
(c1 + c2t + c3t

2/2) + e−3t
⎛
⎜
⎝

0
−1
2/3

⎞
⎟
⎠
(c2 + c3t) + e

−3tc3
⎛
⎜
⎝

−1/6
0

2/9

⎞
⎟
⎠
.

(5.3)

In the above example, we computed for ξ⃗, and then η⃗ and then θ⃗ in this order.
Now we present another method for find three linearly independent vectors ξ⃗∗, η⃗∗, θ⃗∗
satisfying

(A + 3I)ξ⃗∗ = 0⃗, (A + 3I)η⃗∗ = ξ⃗∗, (A + 3I)θ⃗∗ = η⃗∗.
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Example 5.15. We begin by computing

(A + 3I)2 =
⎛
⎜
⎝

6 12 18
−6 −12 −18
2 4 6

⎞
⎟
⎠
, (A + 3I)3 =

⎛
⎜
⎝

0 0 0
0 0 0
0 0 0

⎞
⎟
⎠
,

and since

(A + 3I)3θ⃗∗ = 0⃗,

we can choose θ⃗∗ to be any non-zero vector, e.g.

θ⃗∗ =
⎛
⎜
⎝

1
0
0

⎞
⎟
⎠
.

Then,

η⃗∗ = (A + 3I)θ⃗∗ =
⎛
⎜
⎝

−4
2
0

⎞
⎟
⎠
, ξ⃗∗ = (A + 3I)η⃗∗ =

⎛
⎜
⎝

6
−6
2

⎞
⎟
⎠
.

To check, we again compute

(A + 3I)ξ⃗∗ = 0⃗,

and so the general solution is

y⃗∗(t) = e−3t
⎛
⎜
⎝

6
−6
2

⎞
⎟
⎠
(c1 + c2t + c3t

2/2) + e−3t
⎛
⎜
⎝

−4
2
0

⎞
⎟
⎠
(c2 + c3t) + e

−3tc3
⎛
⎜
⎝

1
0
0

⎞
⎟
⎠
. (5.4)

Now, are the two solutions (5.3) and (5.4) equivalent? Indeed, since we can write
ξ⃗, η⃗, θ⃗ as linear combinations of ξ⃗∗, η⃗∗, θ⃗∗:

ξ⃗ = 2ξ⃗∗, η⃗ =
1

3
ξ⃗∗ +

1

2
η⃗∗, θ⃗ =

1

9
ξ⃗∗ +

1

3
η⃗∗ +

1

2
θ⃗∗.

5.5 Non-homogeneous linear systems

We now study for A ∈ Rn×n the non-homogeneous system

y⃗′(t) = Ay⃗(t) + g⃗(t), (5.5)

and if y⃗1, . . . , y⃗n are n linearly independent solutions to the homogeneous system
y⃗′(t) = Ay⃗(t), and v⃗(t) is a particular solution to the non-homogeneous system,
then the general solution is

y⃗(t) = c1y⃗1(t) + ⋅ ⋅ ⋅ + cny⃗n(t) + v⃗(t).

There are certain special cases where the theory simplifies.
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(1) A ∈ Rn×n is a diagonal matrix, i.e.,

A =

⎛
⎜
⎜
⎜
⎝

r1 0 . . . 0
0 r2 . . . 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ rn

⎞
⎟
⎟
⎟
⎠

,

then (5.5) becomes

y′1(t) = r1y1(t) + g1(t),
⋮

y′n(t) = rnyn(t) + gn(t),

i.e., we obtain n first order linear equations where the solution is

yi(t) = e
rit
∫ e−risgi(s) ds + cierit.

(2) A is a Jordan matrix, i.e.,

A =

⎛
⎜
⎜
⎜
⎝

r 1 0 . . .
0 r 1 . . .
⋮ ⋱ ⋱ ⋮

0 0 0 r

⎞
⎟
⎟
⎟
⎠

,

then (5.5) becomes

y′1(t) = ry1(t) + r2(t) + g1(t),
y′2(t) = ry2(t) + y3(t) + g2(t),

⋮

y′n−1(t) = ryn−1(t) + yn(t) + gn−1(t),
y′n(t) = ryn(t) + gn(t).

We can solve in reverse order:

yn(t) = e
rt
∫ e−rsgn(s) ds + cnert,

and then solve for yn−1, and so on.

Since having the matrix A in a diagonal or Jordan form is rather useful, can we
transform a general matrix A into something equivalent?

Definition 5.8. A matrix A ∈ Rn×n is diagonalizable if there is an invertible
matrix P and a diagonal matrix D such that

P−1AP = D .
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From linear algebra, if A ∈ Rn×n has n linearly independent eigenvectors x⃗1, . . . , x⃗n
with eigenvalues r1, . . . , rn, then

P = (ξ⃗1 ξ⃗2 . . . ξ⃗n), D =

⎛
⎜
⎜
⎜
⎝

r1 0 . . . 0
0 r2 . . . 0
⋮ ⋱ ⋱ ⋮

0 0 . . . rn

⎞
⎟
⎟
⎟
⎠

,

i.e., the columns of P are the eigenvectors and D is the diagonal matrix where the
entries of the main diagonal are the eigenvalues. Hence, if A is diagonalizable, we
define the new vector x⃗ ∶= P−1y⃗, which is well-defined since P is invertible. Then,

x⃗′(t) = P−1y⃗′(t) = P−1(APx⃗(t) + g⃗(t))

⇒ x⃗′(t) = Dx⃗(t) + h⃗(t), h⃗(t) ∶= P−1g⃗(t) .

In particular, we know how to solve for x⃗:

xi(t) = e
rit
∫ e−rishi(s) ds + cierit.

Then, the solution to the non-homogeneous system (5.5) when A is a diagonalizable
matrix can be computed from the expression y⃗(t) = Px⃗(t).

Example 5.16. For

A = (
1 1
4 1

) ,

the eigenvalues are r1 = 3 and r2 = −1 with corresponding eigenvectors

ξ⃗1 = (
1
2

) , ξ⃗2 = (
1
−2

) .

Setting

P = (
1 1
2 −2

) , P−1 = (
1/2 1/4
1/2 −1/4

) ,

we see that

P−1AP = (
3 0
0 −1

) = D.

Sadly, not every matrix can be diagonalized. However, we can turn every square
matrix into a Jordan matrix (so-called its Jordan normal form).

Let A ∈ Rn×n be a matrix with eigenvalues r1, . . . , rm where m ∈ N, and each
eigenvalue ri has an alg. mult. of ki ∈ N. This implies that the characteristic
equation looks like

PA(r) = (r − r1)
k1(r − r2)

k2 . . . (r − rm)km ,
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where k1 + ⋅ ⋅ ⋅ + km = n. Now suppose each eigenvalue has a geo. mult. of li, where
for each 1 ≤ i ≤ m, 1 ≤ li ≤ ki (recall 1 ≤ geo. mult. ≤ alg. mult.). Then, A has the
following Jordan normal form J:

J =

⎛
⎜
⎜
⎜
⎜
⎝

J1 O O . . . O

O J2 O . . . O

⋮ ⋱ ⋱ ⋱ ⋮

O O . . . O Jl

⎞
⎟
⎟
⎟
⎟
⎠

where each Jordan block Ji, 1 ≤ i ≤ l is a Jordan matrix. Furthermore,

(a) l = l1 + ⋅ ⋅ ⋅ + lm is the total number of Jordan blocks. I.e., the sum of the geo.
mult. is the total number of Jordan matrices in the Jordan normal form J.

(b) For each eigenvalue ri, the number of Jordan blocks with values ri on its
diagonal is equal to li, the geo. mult. corresponding to ri.

(c) The eigenvalue ri appears on the main diagonal of J exactly ki times (the alg.
mult. of ri).

In addition, up to reordering of the blocks, the Jordan normal form of a matrix is
unique.

Example 5.17. Let

A = (
2 −3
3 4

) ,

then the eigenvalues are r1 = r2 = −1, i.e., the alg. mult. is two. It turns out that
the geo. mult. is only one. Therefore, m = 1, l1 = 1 and k1 = 2. From the above we
expect that the Jordan normal form J for A has the following:

• 1 Jordan block (l1 = 1) for the eigenvalue r = −1, and r = −1 appears twice
(k1 = 2) on the main diagonal of J.

Therefore, the Jordan normal form should look like

J = (
−1 1
0 −1

) .

Example 5.18. Let

A =
⎛
⎜
⎝

3 1 0
−1 1 0
3 2 2

⎞
⎟
⎠
,

then the eigenvalues are r1 = r2 = r3 = 3, and it turns out that the geo. mult. is one.
Hence, we expect that the Jordan normal form J for A has the following:

• 1 Jordan block (l1 = 1) for the eigenvalue r = 3, and r = 3 appears three times
(k1 = 3) on the main diagonal of J.
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Therefore, the Jordan normal form should look like

J =
⎛
⎜
⎝

3 1 0
0 3 1
0 0 3

⎞
⎟
⎠
.

Example 5.19. Let

A =
⎛
⎜
⎝

2 4 −8
0 0 4
0 −1 4

⎞
⎟
⎠
,

then the eigenvalues are r1 = r2 = r3 = 2, but this time the geo. multi. is two. Hence,
we expect

• 2 Jordan blocks (l1 = 2) and r = 2 appears three times (k1 = 3) on the main
diagonal of J.

Therefore, the Jordan normal form should look like

J =
⎛
⎜
⎝

2 0 0
0 2 1
0 0 2

⎞
⎟
⎠

or
⎛
⎜
⎝

2 1 0
0 2 0
0 0 2

⎞
⎟
⎠
.

Similar to the concept of diagonalizable matrices, if we can find an invertible
matrix Q such that

Q−1AQ = J,

where J is the Jordan normal form of A. Then, by setting z⃗ = Q−1y⃗, we find that

z⃗′(t) = Q−1y⃗′(t) = Q−1(AQz⃗(t) + g⃗(t))

⇒ z⃗′(t) = Jz⃗(t) + h⃗(t), h⃗(t) ∶= Q−1g⃗(t) .

Solving the above system when we have a Jordan matrix is considerably easier com-
pared to the original matrix A. Then, the solution to the original non-homogeneous
system can be obtained from the expression y⃗(t) = Qz⃗(t).

The question is how we can find such a matrix Q? It turns out that the columns
of Q are the generalized eigenvectors of A.

Let’s start with an example. Suppose A is a 4-by-4 matrix with Jordan normal
form

J =
⎛
⎜
⎜
⎜
⎝

r1 0 0 0
0 r2 0 0
0 0 r3 1
0 0 0 r3

⎞
⎟
⎟
⎟
⎠

,
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that is, we have one Jordan block of size 1 × 1 for r1, one Jordan block of size 1 × 1
for r2 and one Jordan block of size 2× 2 for r3. Let the columns of Q be denoted as
q⃗1, q⃗2, q⃗3, q⃗4. Using that if Q−1AQ = J, we have AQ = QJ and so

A
⎛
⎜
⎝

∣ ∣ ∣ ∣

q⃗1 q⃗2 q⃗3 q⃗4
∣ ∣ ∣ ∣

⎞
⎟
⎠
=
⎛
⎜
⎝

∣ ∣ ∣ ∣

q⃗1 q⃗2 q⃗3 q⃗4
∣ ∣ ∣ ∣

⎞
⎟
⎠
J

=
⎛
⎜
⎝

∣ ∣ ∣ ∣

r1q⃗1 r2q⃗2 r3q⃗3 r3q⃗4 + q⃗3
∣ ∣ ∣ ∣

⎞
⎟
⎠

Comparing the columns we have

(A − r1I)q⃗1 = 0⃗,

(A − r2I)q⃗2 = 0⃗,

(A − r3I)q⃗3 = 0⃗,

(A − r3I)q⃗4 = q⃗3.

In particular, q⃗1, q⃗2, q⃗3 are eigenvectors corresponding to eigenvalues r1, r2, r3, and q⃗4
is a generalized eigenvector of rank 1 corresponding to r3.

Example 5.20. For

A = (
2 1
−1 4

) ,

the eigenvalues are r1 = r2 = 3. Furthermore,

A − 3I = (
−1 1
−1 1

) ,

and so we only have one eigenvector ξ⃗ for r = 3, which we take as

ξ⃗ = (
1
1

) .

Since the geo. mult. of r = 3 is one, we have to obtain a generalized eigenvector η⃗
of rank 1. Note that

(A − 3I)2 = (
0 0
0 0

) ,

and so for η⃗ we can choose any arbitrary vector, e.g.,

η⃗ = (
1
0

)⇒ θ⃗ = (A − 3I)η⃗ = (
−1
−1

) .

Hence, we can set

Q = (
−1 1
−1 0

) with Q−1 = (
0 −1
1 −1

) ,
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and one can check that

Q−1AQ = (
3 1
0 3

) .

Notice, we did not use the eigenvector ξ⃗ with the generalized eigenvector η⃗!

5.5.1 Method of undetermined coefficients

If we have a non-homogeneous term g⃗(t) where each component has a sum or prod-
uct of exponentials, cosine, sine and polynomials, then we can use the method of
undetermined coefficients to obtain a particular solution to the non-homogeneous
system

y⃗′(t) = Ay⃗(t) + g⃗(t).

One difference compared to second order equations and n-th order equations is that
now the undetermined coefficients are vectors. We now list the trial solutions for
specific examples of g⃗:

g⃗(t) Solution form value of s

P⃗m(t) Q⃗m+s(t) alg. mult. of 0

P⃗m(t)eαt Q⃗m+s(t)eαt alg. mult. of α

P⃗m(t)eαt cos(βt) Q⃗m+s(t)eαt cos(βt) + R⃗m+s(t)eαt sin(βt) alg. mult. of α + iβ

P⃗m(t)eαt sin(βt) Q⃗m+s(t)eαt cos(βt) + R⃗m+s(t)eαt sin(βt) alg. mult. of α + iβ

Here, we use the notation

P⃗m(t) = a⃗nt
n + a⃗n−1tn−1 + ⋅ ⋅ ⋅ + a⃗1t + a⃗0,

where a⃗0, . . . , a⃗n are constant vectors, so that P⃗m(t) is a vector-valued polynomial
of degree m.

Remark 5.4. In contrast to n-th order linear equations, where the form of the trial
solution is tsQm(t), so that the lowest order term is ts, for linear systems we have
to use a trial solution of the form Qm+s(t), which is a polynomial of degree m + s
which includes all lower order terms ts−1, ts−2, . . . , t1, t0.

Example 5.21. Consider

y⃗′(t) = (
−2 1
1 −2

) y⃗(t) + (
2e−t

3t
) .

We set

g⃗(t) = (
2e−t

3t
) , A = (

−2 1
1 −2

) ,
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and first find the solution to the homogeneous system. The characteristic equation
for A is

det(A − rI) = (r + 3)(r + 1) = 0⇒ r1 = −3, r2 = −1.

Computing

A + 3I = (
1 1
1 1

) , A + I = (
−1 1
1 −1

) ,

and so we can take as eigenvectors

ξ⃗1 = (
1
−1

) , ξ⃗2 = (
1
1

) .

Therefore, the complementary solution to the homogeneous system y⃗′(t) = Ay⃗(t) is

y⃗c(t) = c1 (
1
−1

) e−3t + c2 (
1
1

) e−t.

Next, observe that

g⃗(t) = (
2
0

) e−t

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
g⃗1(t)

+(
0
3

) t

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
g⃗2(t)

.

Since we have a term g⃗1(t) involving e−t, which forms part of the complementary
solution, recalling the theory for second order equations - where if we encounter a
non-homogeneous equation ay′′ + by′ + cy = eαt and α is a root of the characteristic
equation ar2 + br + c = 0 we should try Y (t) = Ateαt, let’s try a trial solution to the
non-homogeneous system with g⃗1(t) of the form

x⃗(t) = a⃗tet

for some undetermined vector a⃗. Substituting this into the equation gives

x⃗′(t) −Ax⃗(t) = −te−t(Aa⃗ + a⃗) + a⃗e−t = (
2
0

) e−t.

Comparing the coefficients, naturally we choose a⃗ = (
2
0

). But, we also need to

ensure that Aa⃗ + a⃗ = 0⃗. A short computation shows that

Aa⃗ + a⃗ = (
−2
2

) ≠ 0⃗.

Therefore, the solution cannot be of the form a⃗te−t.

To remedy this let’s try

x⃗(t) = a⃗te−t + b⃗e−t,
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and then

x⃗′(t) −Ax⃗(t) − te−t(Aa⃗ + a⃗) − e−t(b⃗ +Ab⃗ − a⃗) = g⃗1(t).

This means we should have

Aa⃗ + a⃗ = 0⃗, b⃗ +Ab⃗ − a⃗ = (
−2
0

) .

That is, a⃗ should be an eigenvector to the eigenvalue r = −1, and so we take a⃗ = (
1
1

).

Then

Ab⃗ + b⃗ = (
−1
1

)⇒ −b1 + b2 = −1.

We can take b1 = 0, b2 = −1 and so a particular solution to y⃗′(t) = Ay⃗(t) + g⃗1(t) is

x⃗(t) = (
1
1

) te−t + (
0
−1

) e−t.

For a particular solution to y⃗′(t) = Ay⃗(t) + g⃗2(t), we try a trial solution of the form

z⃗(t) = c⃗t + d⃗.

Then,

z⃗′(t) −Az⃗(t) = (c⃗ −Ad⃗) − tAc⃗ = (
0
3

) t.

Hence, we require

Ac⃗ = (
0
−3

) , Ad⃗ = c⃗.

Solving these equations gives

c⃗ = (
1
2

) , d⃗ = (
−4/3
−5/3

) ⇒ z⃗(t) = (
1
2

) t + (
−4/3
−5/3

) ,

and so a particular solution to the non-homogeneous system is

Y⃗ (t) = (
1
1

) te−t + (
0
−1

) e−t + (
1
2

) t + (
−4/3
−5/3

) .

Example 5.22. Find a particular solution to

y⃗′(t) = (
1 4
1 −2

) y⃗(t) + (
e−2t

−2et
) .
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The eigenvalues of the matrix A are r1 = −3, r2 = 2 with corresponding eigenvectors

ξ⃗1 = (
1
−1

) , ξ⃗2 = (
4
1

) .

So the general solution to the homogeneous system is

y⃗c(t) = c1 (
1
−1

) e−3t + c2 (
4
1

) e2t, c1, c2 ∈ R.

Writing the term g⃗(t) as

g⃗(t) = e−2t (
1
0

) + et (
0
−2

) ,

and since neither −2 nor 1 are eigenvalues of A, we try a trial solution of the form

z⃗(t) = a⃗e−2t + b⃗et.

Then, computing

z⃗′(t) −Az⃗(t) = e−2t(−2a⃗ −Aa⃗) + et(b⃗ −Ab⃗) = e−2t ( 1
0

) + et (
0
−2

) ,

and upon comparing coefficients we need

(−2I −A) veca = (
1
0

) , (I −A)b⃗ = (
0
−2

) .

Solving these equations gives

a⃗ = (
0

−0.25
) , b⃗ = (

2
0

) ,

and so a particular solution is

Y⃗ (t) = (
0

−0.25
) e−2t + (

2
0

) et.

Exercise: Find a particular solution to

y⃗′(t) = (
1 5
−1 1

) y⃗(t) + (
e2t

sin(2t)
) .

5.5.2 Variation of parameters

We now consider more general non-homogeneous first order systems of the form

y⃗′(t) = P(t)y⃗(t) + g⃗(t),

where the matrix P(t) is not constant and is not diagonalizable. For the moment,
we neglect the non-homogeneous term and study the homogeneous system y⃗′(t) =
P(t)y⃗(t).
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Definition 5.9 (Fundamental matrix). Let y⃗1(t), . . . , y⃗n(t) be a fundamental set of
solutions to the homogeneous system y⃗′(t) = P(t)y⃗(t). The matrix F defined as

F(t) =
⎛
⎜
⎝

∣ ∣ . . . ∣

y⃗1(t) y⃗2(t) . . . y⃗n(t)
∣ ∣ . . . ∣

⎞
⎟
⎠
=
⎛
⎜
⎝

y11(t) y12(t) . . . y1n(t)
⋮ ⋮ ⋱ ⋮

yn1(t) yn2(t) . . . ynn(t)

⎞
⎟
⎠

is called a fundamental matrix for the system y⃗′(t) = P(t)y⃗(t).

Note that the fundamental matrix F is invertible since its columns are linearly
independent. The general solution to the homogeneous system is of the form

y⃗c(t) = c1y⃗1(t) + ⋅ ⋅ ⋅ + cny⃗n(t) = F(t)c⃗, c⃗ =
⎛
⎜
⎝

c1
⋮

cn

⎞
⎟
⎠
.

If we are also given initial conditions

y⃗(t0) = v⃗ =
⎛
⎜
⎝

v1
⋮

vn

⎞
⎟
⎠
,

then we see that

y⃗(t0) = F(t0)c⃗⇒ c⃗ = F(t0)−1y⃗(t0)⇒ y⃗c(t) = F(t)(F(t0)−1y⃗(t0)) = F(t)F(t0)−1v⃗ .

This gives an expression for the unique solution to the IVP.

Theorem 5.8. Let I ⊂ R be an open interval, then F(t) is a fundamental matrix
for the homogeneous system y⃗′(t) = P(t)y⃗(t) for t ∈ I if and only if

d

dt
F(t) = P(t)F(t) for t ∈ I,

and F(t0) is non-singular (i.e., invertible) for some t0 ∈ I.

Proof. For the direction (⇒), if F is a fundamental matrix for the system y⃗′(t) =
P(t)y⃗(t), then

d

dt
F(t) = d

dt

⎛
⎜
⎝

∣ ∣ . . . ∣

y⃗1(t) y⃗2(t) . . . y⃗n(t)
∣ ∣ . . . ∣

⎞
⎟
⎠
=
⎛
⎜
⎝

∣ ∣ . . . ∣
d
dt y⃗1(t)

d
dt y⃗2(t) . . . d

dt y⃗n(t)
∣ ∣ . . . ∣

⎞
⎟
⎠

=
⎛
⎜
⎝

∣ ∣ . . . ∣

P(t)y⃗1(t) P(t)y⃗2(t) . . . P(t)y⃗n(t)
∣ ∣ . . . ∣

⎞
⎟
⎠
= P(t)F(t).

For the direction (⇐), if a matrix function F(t) satisfies d
dtF(t) = P(t)F(t) for t ∈ I

with F(t0) non-singular at some t0 ∈ I, then writing

F(t) =
⎛
⎜
⎝

∣ ∣ . . . ∣

x⃗1(t) x⃗2(t) . . . x⃗n(t)
∣ ∣ . . . ∣

⎞
⎟
⎠
,
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for some vectors x⃗1(t), . . . , x⃗n(t) denoting the columns of the matrix F, we have to
verify that x⃗1(t), . . . , x⃗n(t) is a fundamental set of solutions to the homogeneous
system. Firstly,

d

dt
F(t) = P(t)F(t)⇒ d

dt
x⃗i(t) = P(t)x⃗i(t),

and so x⃗1(t), . . . , x⃗n(t) are all solutions to the homogeneous system. Furthermore,
the Wronskian at t0 is

W (x⃗1, . . . , x⃗n)[t0] = detF(t0) ≠ 0,

by assumption. Hence (x⃗1, . . . , x⃗n) forms a fundamental set of solutions to the
homogeneous system and so F is a fundamental matrix.

Theorem 5.9. If F(t) is a fundamental matrix and A is a non-singular constant
matrix, then F(t)A is a fundamental matrix.

Proof. Let

F(t) =
⎛
⎜
⎝

∣ ∣ . . . ∣

y⃗1(t) y⃗2(t) . . . y⃗n(t)
∣ ∣ . . . ∣

⎞
⎟
⎠
.

Then,

F(t)A =
⎛
⎜
⎝

∣ ∣ . . . ∣

y⃗1(t) y⃗2(t) . . . y⃗n(t)
∣ ∣ . . . ∣

⎞
⎟
⎠
A =

⎛
⎜
⎝

∣ ∣ . . . ∣

x⃗1(t) x⃗2(t) . . . x⃗n(t)
∣ ∣ . . . ∣

⎞
⎟
⎠
,

where

x⃗j(t) =
n

∑
i=1
aij y⃗i(t) for 1 ≤ j ≤ n.

Here, we use the notation

A = (aij)1≤i,j≤n =
⎛
⎜
⎝

a11 a12 . . . a1n
⋮ ⋮ ⋱ ⋮

an1 an2 . . . ann

⎞
⎟
⎠
.

Since y⃗1, . . . , y⃗n solve y⃗′(t) = P(t)y⃗(t), we see that

x⃗′i(t) =
n

∑
j=1
aij y⃗

′
j(t) =

n

∑
j=1
aijP(t)y⃗j(t) = P(t)x⃗i(t) for 1 ≤ i ≤ n.

Hence, x⃗1, . . . , x⃗n also solve the homogeneous system. Moreover,

W (x⃗1, . . . , x⃗n)[t] = det(F(t)A) = det(F(t))det(A) = det(A)W (y⃗1, . . . , y⃗n)[t] ≠ 0.

This implies that the matrix function F(t)A is also a fundamental matrix.
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Remark 5.5. In general, AF(t) is not a fundamental matrix!

With this in mind, we can choose a special non-singular matrix for A in order to
simplify the expression

y⃗c(t) = F(t)F(t0)−1v⃗

for the unique solution to the IVP

y⃗′(t) = P(t)y⃗(t) for t ∈ I, y⃗(t0) = v⃗.

In particular, choosing

A = F−1(t0)

and setting

G(t) = F(t)F−1(t0),

then Theorem 5.9 implies that G(t) is also a fundamental matrix, since by assump-
tion A = F−1(t0) is non-singular. Since G is a fundamental matrix, then by Theorem
5.8 we see that G satisfies d

dtG(t) = P(t)G(t) but now

G(t0) = F(t0)F−1(t0) = I,

where I is the identity matrix. In particular, if P(t) is a constant matrix, then it is
easy to solve the system

G′(t) = P(t)G(t), G(t0) = I.

Example 5.23. For

y⃗′(t) = (
1 1
4 1

) y⃗(t),

find G(t) such that G(0) = I. We proceed in three steps. The first is to find a
fundamental set of solutions, which is

y⃗1(t) = (
e3t

2e3t
) , y⃗2(t) = (

e−t

−2e−t
) .

The second step is to write the fundamental matrix F and compute F−1(0):

F(t) = (
e3t e−t

2e3t −2e−t
)⇒ F(0) = (

1 1
2 −2

)⇒ F−1(0) = −1

4
(
−2 −1
−2 1

) .

The third step is to compute G(t) = F(t)F−1(0):

G(t) = −
1

4
(

−2e3t − 2e−t −e3t + e−t

−4e−3t + 4e−t −2e3t − 2e−t
)

which satisfies

G(0) = −
1

4
(
−4 0
0 −4

) = I.
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Returning to the non-homogeneous system

y⃗′(t) = P(t)y⃗(t) + g⃗(t).

Assume we have a fundamental matrix F(t) to the homogeneous system with com-
plementary solution

y⃗c(t) = F(t)c⃗,

where c⃗ is a constant vector. The method of variation of parameters is to consider
a trial solution

z⃗(t) = F(t)u⃗(t),

where u⃗(t) is a vector of functions. Then, if z⃗ is a solution to the non-homogeneous
system, we find that

P(t)F(t)u⃗(t) + g(t) = z⃗′(t) = F(t)u⃗′(t) + F′(t)u⃗(t).

Since F(t) is a fundamental matrix, i.e., F′(t) = P(t)F(t), we see that

F(t)u⃗′(t) = g⃗(t)⇒ u⃗′(t) = F−1(t)g⃗(t) .

Integrating this gives

u⃗(t) = ∫ F−1(t)g⃗(t) dt + a⃗ ,

where a⃗ is an arbitrary constant vector. Therefore the general solution to the non-
homogeneous system is

y⃗(t) = F(t)c⃗ + F(t) [∫ F−1(t)g⃗(t) dt + a⃗]

= F(t)(c⃗ + a⃗) + F(t) [∫ F−1(t)g⃗(t) dt] .

In particular, we could have taken a⃗ = 0⃗, leading to the expression

y⃗(t) = F(t)c⃗ + F(t) [∫ F−1(t)g⃗(t) dt] .

If we are also given initial conditions y⃗(t0) = x⃗, then in the integral we write

∫

t

t0
F−1(s)g⃗(s) ds

so that

x⃗ = y⃗(t0) = F(t0)c⃗⇒ c⃗ = F−1(t0)x⃗.

Hence, the unique solution to the IVP in the interval I is

y⃗(t) = F(t)F−1(t0)x⃗ + F(t) [∫
t

t0
F−1(s)g⃗(s) ds] .
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Example 5.24. Find a particular solution to

y⃗′(t) = (
−2 1
1 −2

) y⃗(t) + (
2e−t

3t
) .

Using the method of undetermined coefficients, we have that one particular solution
is

Y⃗ (t) = (
1
1

) te−t − (
0
1

) e−t + (
1
2

) t −
1

3
(

4
5

) .

Recalling that the complementary solution to the homogeneous system is

y⃗c(t) = c1 (
1
−1

) e−3t + c2 (
1
1

) e−t.

Computing the fundamental matrix

F(t) = (
e−3t e−t

−e−3t e−t
) ,

its determinant detF(t) = 2e−4t and its inverse

F−1(t) = 1

2
(
e3t −e3t

et et
)

we can then compute for the unknown coefficients by solving

u⃗′(t) = F−1(t)g⃗(t)⇒
⎧⎪⎪
⎨
⎪⎪⎩

u′1(t) = e2t −
3
2te

3t,

u′2(t) = 1 + 3
2te

t.

This gives

u1(t) =
1

2
e2t −

1

2
te3t +

1

6
e3t, u2(t) = t +

3

2
tet −

3

2
et,

where we used

∫ teαt dt =
αt − 1

α2
eαt.

Hence, a particular solution is

Z⃗(t) = F(t)u⃗(t) = te−t ( 1
1

) +
1

2
(

1
−1

) e−t + t(
1
2

) −
1

3
(

4
5

) .

Note that Y⃗ (t) obtained from the method of undetermined coefficients is different
from the particular solution Z⃗(t) obtained from the variation of parameters:

Y⃗ (t) = (
1
1

) te−t − (
0
1

) e−t + (
1
2

) t −
1

3
(

4
5

) ,

Z⃗(t) = (
1
1

) te−t +
1

2
(

1
−1

) e−t + (
1
2

) t −
1

3
(

4
5

) .
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One can check that both Y⃗ and Z⃗ are particular solutions, but the corresponding
general solutions to the non-homogeneous system are equivalent:

y⃗(t) = c1 (
1
−1

) e3t + c2 (
1
1

) e−t + Y⃗ (t) = d1 (
1
−1

) e3t + d2 (
1
1

) e−t + Z⃗(t)

if we choose

c1 = d1, c2 = d2 +
1

2
.

Example 5.25. Find a particular solution to

y⃗′(t) = (
1 4
1 −2

) y⃗(t) + (
e−2t

−2et
) .

From before, the eigenvalues of A are r1 = −3 and r2 = 2 with eigenvectors

ξ⃗1 = (
1
−1

) , ξ⃗2 = (
4
1

) .

From this we can write down the fundamental matrix

F(t) = (
e−3t 4e2t

−e−3t e2t
) .

The determinant is detF(t) = 5e−t, with inverse

F(t)−1 = 1

5
(
e3t −4e3t

e−2t e−2t
) .

Then, for the unknown coefficients, we solve

u⃗′(t) = F−1(t)g⃗(t)⇒
⎧⎪⎪
⎨
⎪⎪⎩

u′1(t) =
1
5(e

t + 8e4t),

u′2(t) =
1
5(e

−4t − 2e−t).

This gives

u1(t) =
1

5
et +

2

5
e4t, u2(t) =

−1

20
e−4t +

2

5
e−t,

and the particular solution is

Z⃗(t) = F(t)u⃗(t) = (
2et

−0.25e−2t
) ,

which coincides with the particular solution obtained from the method of undeter-
mined coefficients.
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