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4 Higher order linear equations

The theory for higher order linear equations is analogous to that of the second order
case. Let us give a brief recap:

• For a general second order equation

y′′ + p(t)y′ + q(t)y = g(t).

If there is an interval I such that p, q and g are continuous, then for t0 ∈ I and
given initial conditions x0, x1 ∈ R, the IVP has exactly one solution in I.

• Given two linearly independent solutions y1, y2 to the homogeneous equation

y′′ + p(t)y′ + q(t)y = 0,

they form a fundamental set of solutions if any solution φ to the homogeneous
ODE can be written as a linear combination of y1 and y2. This is equivalent to
the condition that the Wronskian W (y1, y2)[t∗] = y′2(t∗)y1(t∗)−y′1(t∗)y2(t∗) ≠ 0
for some t∗ ∈ I.

• Abel’s theorem states that

W (y1, y2)[t] = ce−∫ p(t) dt

for some constant c not depending on t.

• For homogeneous equations with constant coefficients:

ay′′ + by′ + cy = 0,

finding two solutions y1 and y2 amounts to finding the roots of the character-
istic equation

ar2 + br + c = 0.

• For non-homogeneous equations we have two methods:

1. Method of undetermined coefficients: if g(t) is a sum or product of ex-
ponentials, polynomials, cosine and sine.

2. Variation of parameters: for more general linear equations where the
solution is of the form y(t) = u1(t)y1(t) + u2(t)y2(t).
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4.1 General theory

The general nth order linear ODE is of the form

y(n) + Pn−1(t)y(n−1) + ⋅ ⋅ ⋅ + P1(t)y′ + P0(t)y = g(t),

and for an IVP we prescribe initial conditions

y(t0) = x0, y′(t0) = x1, . . . , y(n−1)(t0) = xn−1.

We first state the abstract existence and uniqueness theorem.

Theorem 4.1 (Existence and Uniqueness). Let I ⊂ R be an open interval and
suppose g,P0, P1, . . . , Pn−1 are continuous functions in I. For t0 ∈ I and x0, . . . , xn−1 ∈
R there is exactly one solution to the IVP

⎧⎪⎪⎨⎪⎪⎩

y(n) + Pn−1(t)y(n−1) + ⋅ ⋅ ⋅ + P1(t)y′ + P0(t)y = g(t),
y(t0) = x0, y′(t0) = x1, . . . , y(n−1)(t0) = xn−1.

In the following we will mainly focus on homogeneous equations, i.e., we set
g = 0.

Definition 4.1. We say that the functions f1, . . . , fn are linearly independent
on the interval I if

α1f1(t) + ⋅ ⋅ ⋅ + αnfn(t) = 0 ∀t ∈ I
⇒ α1 = ⋅ ⋅ ⋅ = αn = 0.

Otherwise, we say that the functions f1, . . . , fn are linearly dependent.

Example 4.1. Given functions f1(t) = 1, f2(t) = t, f3(t) = t2 defined on the interval
I = R, suppose there are constants α1, α2, α3 such that

α1f1(t) + α2f2(t) + α3f3(t) = α1 + α2t + α3t
2 = 0 ∀t ∈ I. (4.1)

Then, in order for the above equality to hold for all t ∈ I = R, it must be true at any
three distinct points in I. It is convenient to choose t = 0, t = 1, t = −1, leading to
three equations

α1 = 0, α1 + α2 + α3 = 0, α1 − α2 + α3 = 0.

The first equation gives α1 = 0, and the second and third equations then give α2 =
α3 = 0, thus there does not exist a set of non-zero constants (α1, α2, α3) for which the
condition (4.1) is satisfied, which then implies that f1, f2, f3 are linearly independent
in I = R.

Similar to the second order case, we have the following principle of superposition:
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Theorem 4.2 (Principle of superposition). Let y1, . . . , yn be solutions to the homo-
geneous equation

y(n) + Pn−1(t)y(n−1) + ⋅ ⋅ ⋅ + P1(t)y′ + P0(t)y = 0,

then, for any constants c1, . . . , cn ∈ R, the function

φ(t) = c1y1(t) + ⋅ ⋅ ⋅ + cnyn(t)

is also a solution to the homogeneous equation.

We also have an analogue to the Wronskian:

Definition 4.2. Given functions f1, . . . , fn that are differentiable up to order n− 1,
we define the Wronskian W as

W (f1, . . . , fn)[t] = det

⎛
⎜⎜⎜⎜
⎝

f1 f2 . . . fn
f ′1 f ′2 . . . f ′n
⋮ ⋮ ⋮ ⋮

f
(n−1)
1 f

(n−1)
2 . . . f

(n−1)
n

⎞
⎟⎟⎟⎟
⎠
[t] .

The natural question is: given n solutions y1, . . . , yn to the homogeneous equa-
tion, can every solution φ to the homogeneous equation be expressed as a linear
combination of y1, . . . , yn?

Theorem 4.3. If P0, . . . , Pn−1 are continuous functions in I, and y1, . . . , yn are so-
lutions to the homogeneous equation satisfying W (y1, . . . , yn)[t0] ≠ 0 for some t0 ∈ I,
then every solution φ to the homogeneous equation can be expressed as a linear combi-
nation of y1, . . . , yn. In this case we call (y1, . . . , yn) a fundamental set of solutions
to the homogeneous equation.

Let us remark that the above theorem gives

W (y1, . . . , yn)[t] ≠ 0⇒ (y1, . . . , yn) are linearly independent.

Again, the converse is not true in general, unless y1, . . . , yn are solutions to some
homogeneous equation, then the converse is true.

Theorem 4.4. Let y1, . . . , yn be linearly independent solutions to the homogeneous
equation

y(n) + Pn−1(t)y(n−1) + ⋅ ⋅ ⋅ + P1(t)y′ + P0(t)y = 0,

for t ∈ I. Then, the Wronskian W (y1, . . . , yn)[t] is non-zero in I.

Proof. Suppose the conclusion is false, i.e., there is at least one point t0 ∈ I where
the Wronskian is zero. Then, consider the equation

α1y1(t) + ⋅ ⋅ ⋅ + αnyn(t) = 0,
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for constants α1, . . . , αn. Differentiating repeatedly leads to

α1y
′
1(t) + ⋅ ⋅ ⋅ + αny′n(t) = 0,

⋮
α1y

(n−1)
1 (t) + ⋅ ⋅ ⋅ + αny(n−1)n (t) = 0.

In particular we obtain after substituting t = t0

⎛
⎜⎜⎜⎜
⎝

y1(t0) y2(t0) . . . yn(t0)
y′1(t0) y′2(t0) . . . y′n(t0)
⋮ ⋮ ⋱ ⋮

y
(n−1)
1 (t0) y

(n−1)
2 (t0) . . . y

(n−1)
n (t0)

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

α1

α2

⋮
αn

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

0
0
⋮
0

⎞
⎟⎟⎟
⎠
.

Since the Wronskian is zero at t = t0, there exists a non-zero solution (α∗1 , . . . , α∗n)
to the above matrix problem. Defining the function

φ(t) = α∗1y1(t) + ⋅ ⋅ ⋅ + α∗nyn(t),

where thanks to the principle of superposition, φ is also a solution to the homoge-
neous equation. Furthermore, at t = t0, φ satisfies the initial conditions

φ(t0) = 0, φ′(t0) = 0, . . . , φ(n−1)(t0) = 0.

But the solution z(t) = 0 for t ∈ I is also a solution to the IVP with zero initial
conditions. Consequently, by the Uniqueness of solutions to IVP we find that φ(t) =
0 for t ∈ I. Consequently we have found non-zero constants α∗1 , . . . , α∗n such that

α∗1y1(t) + ⋅ ⋅ ⋅ + α∗nyn(t) = 0 ∀t ∈ I.

This contradicts with the linear independence of y1, . . . , yn.

Finally, we state an analogous result to Abel’s theorem:

Theorem 4.5 (Abel’s theorem). Let y1, . . . , yn be solutions to the homogeneous
equation

y(n) + Pn−1(t)y(n−1) + ⋅ ⋅ ⋅ + P1(t)y′ + P0(t)y = 0,

for t ∈ I. Then,

W (y1, . . . , yn)[t] = ce−∫ Pn−1(t) dt

for a constant c not dependent on t ∈ I.

Proof. The idea is to derive an equation satisfied by the Wronskian. From properties
of matrix determinants, we see that

d

dt
∣ a b
c d

∣ = d

dt
(ad − bc) = ad′ + a′d − bc′ − b′c = ∣ a

′ b′

c d
∣ + ∣ a b

c′ d′
∣ .
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Hence, we can deduce

d

dt
W (y1, . . . , yn)[t] =

d

dt

RRRRRRRRRRRRRRRRRRR

y1 y2 . . . yn
y′1 y′2 . . . y′n
⋮ ⋮ ⋱ ⋮

y
(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n

RRRRRRRRRRRRRRRRRRR

=

RRRRRRRRRRRRRRRRRRR

y1 y2 . . . yn
y′1 y′2 . . . y′n
⋮ ⋮ ⋱ ⋮

y
(n)
1 y

(n)
2 . . . y

(n)
n

RRRRRRRRRRRRRRRRRRR

.

Technically, we should have

d

dt
W [t] =

RRRRRRRRRRRRRRRRRRR

y′1 y′2 . . . y′n
y′1 y′2 . . . y′n
⋮ ⋮ ⋱ ⋮

y
(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n

RRRRRRRRRRRRRRRRRRR

+

RRRRRRRRRRRRRRRRRRR

y1 y2 . . . yn
y′′1 y′′2 . . . y′′n
⋮ ⋮ ⋱ ⋮

y
(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n

RRRRRRRRRRRRRRRRRRR

+ ⋅ ⋅ ⋅ +

RRRRRRRRRRRRRRRRRRR

y1 y2 . . . yn
y′1 y′2 . . . y′n
⋮ ⋮ ⋱ ⋮

y
(n)
1 y

(n)
2 . . . y

(n)
n

RRRRRRRRRRRRRRRRRRR

.

But noting that in the first n−1 determinants, there is always a repeated row, hence
the the first n − 1 determinants are zero and only the last determinant survives.
Using that for each 1 ≤ k ≤ n,

y
(n)
k = −Pn−1y(n−1)k − ⋅ ⋅ ⋅ − P1y

′
k − P0yk,

then applying elementary column operations we find that

d

dt
W [t] =

RRRRRRRRRRRRRRRRRRR

y1 y2 . . . yn
y′1 y′2 . . . y′n
⋮ ⋮ ⋱ ⋮

−Pn−1y(n−1)1 −Pn−1y(n−1)2 . . . −Pn−1y(n−1)n

RRRRRRRRRRRRRRRRRRR

= −Pn−1W [t].

4.2 Homogeneous equation with constant coefficients

Our aim is to study, for constants an ≠ 0, an−1, . . . , a0 ∈ R the equation

any
(n) + an−1y(n−1) + ⋅ ⋅ ⋅ + a1y′ + a0y = 0.

From the theory of second order equations, we consider a trial function φ = ert for
r ∈ R. Substituting this into the above equation gives the characteristic equation

anr
n + ⋅ ⋅ ⋅ + a1r + a0 = 0 .

The characteristic polynomial is

Z(r) = anrn + ⋅ ⋅ ⋅ + a1r + a0 .

5



From the fundamental theorem of algebra, every polynomial with real coefficients
of degree n has n complex roots. Hence

Z(r) = an(r − r1)(r − r2) . . . (r − rn),

where r1, . . . , rn are complex numbers. Note that real numbers are also complex
numbers.

Definition 4.3. Let Pk(x) be a polynomial of degree k in the variable x. A root r
has multiplicity m ∈ N, m ≥ 1, if there is another polynomial Sk−m(x) of degree
k −m such that Sk−m(r) ≠ 0 and

Pk(x) = Sk−m(x)(x − r)m.

The idea is to solve the characteristic equation to obtain roots r1, . . . , rn. Similar
to the second order equations, it is possible that roots are repeated (e.g., for ay′′ +
by′ + cy = 0 a repeated root of multiplicity two is r = − b

2a). We divide the analysis
into the following cases:

Case 1. If the roots of Z(r) = 0 are all real and distinct, i.e., r1 ≠ r2 ≠ ⋅ ⋅ ⋅ ≠ rn,
then we have the solutions

y1(t) = er1t, . . . , yn(t) = ernt,

and they form a fundamental set of solutions.

Exercise. Compute the Wronskian W (y1, . . . , yn)[t] to show that (y1, . . . , yn) do
indeed form a fundamental set of solutions.

Case 2. If Z(r) = 0 has n repeated real roots, i.e., r1 = r2 = ⋅ ⋅ ⋅ = rn =∶ q and so

Z(r) = an(r − q)n.

Then q is a root of multiplicity n, and the solutions

y1(t) = eqt, y2(t) = teqt, . . . , yn(t) = tn−1eqt

forms a fundamental set of solutions.

Case 3. If Z(r) = 0 has k distinct real roots r1 ≠ r2 ≠ ⋅ ⋅ ⋅ ≠ rk, and one real root q
with multiplicity n − k, i.e.,

Z(r) = an(r − r1)(r − r2) . . . (r − rk)(r − q)n−k.

Then, the solutions

y1(t) = er1t, . . . , yk(t) = erkt,
yk+1(t) = eqt, yk+2(t) = teqt, . . . , yn(t) = tn−k−1eqt,
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form a fundamental set of solutions.

By consideration of the above three cases, we can formulate the general rule: If
Z(r) = 0 has real roots r1, . . . , rk with multiplicity m1, . . . ,mk, respectively. Then
m1 + ⋅ ⋅ ⋅ +mk = n and

Z(r) = an(r − r1)m1(r − r2)m2 . . . (r − rk)mk .

Furthermore, the functions

y1 = er1t, y2 = ter1t, . . . , ym1 = tm1−1er1t,
ym1+1 = er2t, . . . , ym1+m2 = tm2−1er2t, . . . , yn = tmk−1erkt

form a fundamental set of solutions.

Case 4. One pair of complex conjugate roots. Suppose Z(r) = 0 has n − 2 real
roots r1, . . . , rn−2 and a pair of complex conjugate roots rn−1, rn ∈ C with rn−1 = rn.
Setting

rn−1 = λ + iµ, rn = λ − iµ,

the functions

y1 = er1t, . . . , yn−2 = ern−2t, yn−1 = eλt cos(µt), yn = eλt sin(µt)

form a fundamental set of solutions.

Case 5. Repeated pairs of complex conjugate roots. Suppose

Z(r) = an(r − r1) . . . (r − rk)(r − (λ + iµ))s(r − (λ − iµ))s,

where k + 2s = n. Note that if a complex root λ + iµ is repeated s times, then its
conjugate λ−iµ is also repeated s times. This means we need 2s linearly independent
solutions:

eλt cos(µt), teλt cos(µt), . . . , ts−1eλt cos(µt),
eλt sin(µt), teλt sin(µt), . . . , ts−1eλt sin(µt),

together with y1 = er1t, . . . , yk = erkt we obtain a fundamental set of solutions.

Let’s look at some examples:

Example 4.2. (1) Characteristic equation (r2+1)(r−1)2(r+2) = 0, and so r1 = i,
r2 = −i, r3 = r4 = 1 and r5 = −2. Therefore, we have

y1 = cos t, y2 = sin t, y3 = et, y4 = tet, y5 = e−2t.

(2) Characteristic equation (r2 + 1)2(r − 1)3 = 0, and so r1 = r2 = i, r3 = r4 = −i,
r5 = r6 = r7 = 1. Therefore, we have

y1 = cos t, y2 = t cos t, y3 = sin t, y4 = t sin t, y5 = et, y6 = tet, y7 = t2et.
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4.3 Non-homogeneous equations

Consider the non-homogeneous equation

any
(n) + an−1y(n−1) + ⋅ ⋅ ⋅ + a1y′ + a0y = g(t). (4.2)

If Y1 and Y2 are both solutions to the non-homogeneous problem, then Y1 − Y2
is a solution to the homogeneous equation. Given a fundamental set of solutions
(y1, . . . , yn) to the homogeneous equation, we see that a general solution to the
non-homogeneous equation is

y(t) = c1y1(t) + ⋅ ⋅ ⋅ + cnyn(t) + Y (t),

where Y (t) is a solution to the non-homogeneous equation.

4.3.1 Method of undetermined coefficients

Similar to second order equations, we now find a particular solution Y to the non-
homogeneous equation (4.2) if g(t) is a sum/product of exponentials, cosine, sine
and polynomials. But the main difference is that the multiplicity of roots to the
characteristic equation can be greater than two. Therefore, higher powers of t
need to be multiplied to get the solution to the non-homogeneous equation.

We again investigate the cases:

(1) g(t) = eαtPm(t),

(2) g(t) = eαtPm(t) cos(βt)

(3) g(t) = eαtPm(t) sin(βt).

The particular solutions are

(1) Y (t) = tseαtQm(t), where

Qm(t) = Amtm + ⋅ ⋅ ⋅ +A1t +A0

for undetermined coefficients Am, . . . ,A0, and s is the multiplicity of α if α is
a root of the characteristic equation, zero otherwise.

(2,3) Y (t) = tseαt[Qm(t) cos(βt)+Rm(t) sin(βt)], where Qm,Rm are polynomials of
degree m with undetermined coefficients, and s is the multiplicity of α + iβ if
α + iβ is a root of the characteristic equation, zero otherwise.

Example 4.3. Solve

y′′′ − 3y′′ + 3y′ − y = 4et.

For the homogeneous equation, the associated characteristic equation is

r3 − 3r2 + 3r − 1 = (r − 1)3 = 0,
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and so r1 = r2 = r3 = 1, i.e., a repeated eigenvalue of multiplicity three. So we set

y1 = et, y2 = tet, y3 = t2et,

and the complementary solution (to the homogeneous equation) is

yc(t) = c1et + c2tet + c3t2et.

Since g(t) = 4et and so α = 1 is a root of the characteristic equation. Therefore we
have to consider s = 3 and a trial solution

Y (t) = At3et.

Computing gives

Y ′′′ − 3Y ′′ + 3Y ′ − Y = 6Aet = 4et⇒ A = 2

3
,

and so the general solution to the non-homogeneous ODE is

y(t) = c1et + c2tet + c3t2et +
2

3
t3et.

Another example involving sine:

Example 4.4. Solve

y(4) + 2y′′ + y = 3 sin t.

The characteristic equation corresponding to the homogeneous equation is

r4 + 2r2 + 1 = (r2 + 1)(r2 + 1) = 0

and so r1 = r3 = i, r2 = r4 = −i, i.e, a repeated pair of complex conjugate roots
(multiplicity is two). Then we see that

y1 = cos t, y2 = sin t, y3 = t cos t, y4 = t sin t,

and the complementary solution to the homogeneous equation is

yc(t) = c1 cos t + c2 sin t + c3t cos t + c4t sin t.

For the non-homogeneous term g(t) = 3 sin t, we have α = 0, β = 1, and so s = 2.
Thus we consider a trial solution

Y (t) = At2 sin t +Bt2 cos t.

Then,

Y (4) + 2Y ′′ + Y = −8A sin t − 8B cos t = 3 sin t⇒ B = 0, A = −3

8
.

Hence, the general solution to the non-homogeneous equation is

y(t) = c1 cos t + c2 sin t + c3t cos t + c4t sin t −
3

8
t2 sin t.
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4.4 Variation of parameters

Analogous to second order equations, there is also a method to treat rather general
high order equations

y(n) + Pn−1(t)y(n−1) + ⋅ ⋅ ⋅ + P1(t)y′ + P0y = g(t), t ∈ I.

Suppose we have solutions y1, . . . , yn to the homogeneous equation, which forms a
fundamental set of solutions. Then, the complementary solution is

yc(t) = c1y1(t) + ⋅ ⋅ ⋅ + cnyn(t).

Now, we consider a trial solution for the non-homogeneous equation of the form

Y (t) = u1(t)y1(t) + ⋅ ⋅ ⋅ + un(t)yn(t)

for unknown functions u1, . . . , un. Differentiating gives

Y ′(t) = u1(t)y′1(t) + ⋅ ⋅ ⋅ + un(t)y′n(t) + u′1(t)y1(t) + ⋅ ⋅ ⋅ + u′n(t)yn(t).

As before we set the constraint

u′1(t)y1(t) + u′2(t)y2(t) + ⋅ ⋅ ⋅ + u′n(t)yn(t) = 0 ,

so that the expression for Y ′ simplifies to

Y ′(t) = u1(t)y′1(t) + u2(t)y′2(t) + ⋅ ⋅ ⋅ + un(t)y′n(t).

Computing Y ′′ and setting

u′1(t)y′1(t) + . . . u′n(t)y′n(t) = 0

leads to the simplified expression for the second derivative

Y ′′(t) = u1(t)y′′1 (t) + ⋅ ⋅ ⋅ + un(t)y′′n(t).

Repeating this procedure (differentiating and then setting the sum of terms involving
the derivatives of u1, . . . , un to zero) leads to the n − 1 equations

u′1(t)y
(m)
1 (t) + ⋅ ⋅ ⋅ + u′n(t)y

(m)
n (t) = 0 ∀1 ≤m ≤ n − 2,

as well as a simplified expression for Y (m):

Y (m)(t) = u1(t)y(m)1 (t) + ⋅ ⋅ ⋅ + un(t)y(m)n (t), m = 1, . . . , n − 1,

Y (n)(t) = u1(t)y(n)1 (t) + ⋅ ⋅ ⋅ + un(t)y(n)n (t) + u′1(t)y
(n−1)
1 (t) + ⋅ ⋅ ⋅ + u′n(t)y

(n−1)
n (t).

So if Y is a particular solution to the non-homogeneous equation, substituting all
the expressions for Y and its derivative into the equation, and using that y1, . . . , yn
solve the homogeneous equation, we are lead to

u′1(t)y
(n−1)
1 (t) + ⋅ ⋅ ⋅ + u′n(t)y

(n−1)
n (t) = g(t) .
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Collecting all the expressions involving the first derivative of u1, . . . , un, we obtain

⎛
⎜⎜⎜⎜⎜⎜
⎝

y1 y2 . . . yn−1 yn
y′1 y′2 . . . y′n−1 y′n
⋮ ⋮ ⋱ ⋮ ⋮

y
(n−2)
1 y

(n−2)
2 . . . y

(n−2)
n−1 y

(n−2)
n

y
(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n−1 y

(n−1)
n

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

u′1
u′2
⋮

u′n−1
u′n

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
0
⋮
0
g(t)

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

Thus, the derivatives of the unknown functions u1, . . . , un can be found by inverting
the matrix of derivatives. The determinant of the matrix is the Wronskian, which
is non-zero thanks to the fact that (y1, . . . , yn) forms a fundamental set of solutions.
Setting M(t) as the matrix, we solve

M(t)

⎛
⎜⎜⎜⎜⎜⎜
⎝

u′1
u′2
⋮

u′n−1
u′n

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
0
⋮
0
g(t)

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

To invert M(t), we use Cramer’s rule, by setting

Mi(t) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

y1 . . . 0 . . . yn
y′1 . . . 0 . . . y′n
⋮ ⋮ ⋮

y
(n−2)
1 . . . 0 . . . y

(n−2)
n

y
(n−1)
1 . . . 1 . . . y

(n−1)
n

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

i.e., replace the ith column of M(t) with the vector (0, . . . ,0,1)⊺. Then Cramer’s
rule gives

u′i(t) =
g(t)detMi(t)

detM(t) ,

and by integrating we get an expression for ui(t). The particular solution to the
non-homogeneous equation is therefore

Y (t) = y1(t)∫
g(t)detM1(t)

detM(t) dt + ⋅ ⋅ ⋅ + yn(t)∫
g(t)detMn(t)

detM(t) dt .

However, in general the evaluation of the integrals can be difficult, but we can always
use Abel’s theorem to simplify, since

detM(t) =W (y1, . . . , yn)[t] = ce−∫ Pn−1(t) dt.

We finish with one example.

Example 4.5. Solve

y′′′ + y′ = sec2(t) for t ∈ (−π/2, π/2).
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The characteristic equation for the homogeneous problem is r3 + r = 0 and so r1 = 0,
r2 = i and r3 = −i. Hence the complementary solution is

yc(t) = c1 + c2 cos t + c3 sin t.

By variation of parameters we look for a particular solution of the form

Y (t) = u1y1 + u2y2 + u3y3 = u1(t) + u2(t) cos t + u3(t) sin t,

with

u′1 + u′2 cos t + u′3 sin t = 0,

−u′2 sin t + u′3 cos t = 0,

−u′2 cos t − u′3 sin t = sec2(t),

or equivalently

M(t)
⎛
⎜
⎝

u′1
u′2
u′3

⎞
⎟
⎠
=
⎛
⎜
⎝

0
0

sec2(t)

⎞
⎟
⎠
, M(t) =

⎛
⎜
⎝

1 cos t sin t
0 − sin t cos t
0 − cos t − sin t

⎞
⎟
⎠
.

Computing the determinant of M , we see that detM(t) = 1. Now, define

M1(t) =
⎛
⎜
⎝

0 cos t sin t
0 − sin t cos t
1 − cos t − sin t

⎞
⎟
⎠
, M2(t) =

⎛
⎜
⎝

1 0 sin t
0 0 cos t
0 1 − sin t

⎞
⎟
⎠
, M3(t) =

⎛
⎜
⎝

1 cos t 0
0 − sin t 0
0 − cos t 1

⎞
⎟
⎠
,

it is easy to compute that

detM1(t) = 1, detM2(t) = − cos t, detM3(t) = − sin t,

and so

u1 = ∫ sec2(t) dt = tan(t),

u2 = ∫ − sec2(t) cos(t) dt = − ln(∣ sec(t) + tan(t)∣),

u3 = ∫ − sec2(t) sin(t) dt = − sec(t).

Hence, the particular solution is

Y (t) = tan(t) − cos(t) ln(∣ sec(t) + tan(t)∣) − sin(t) sec(t) = − cos(t) ln(∣ sec(t) + tan(t)∣).
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