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4 Higher order linear equations

The theory for higher order linear equations is analogous to that of the second order
case. Let us give a brief recap:

e For a general second order equation
y"+p(t)y +a(t)y = g(t).

If there is an interval I such that p,q and g are continuous, then for ¢y € I and
given initial conditions zg,z; € R, the IVP has exactly one solution in I.

e Given two linearly independent solutions ¥, 32 to the homogeneous equation
y"+p)y +aq(t)y =0,

they form a fundamental set of solutions if any solution ¢ to the homogeneous
ODE can be written as a linear combination of y; and 3. This is equivalent to
the condition that the Wronskian W (yy, y2)[t«] = v (t.)y1(t.)—yi (t)ya(ts) #0
for some t, € 1.

e Abel’s theorem states that
W (y1,y2)[t] = ce” S P(8) dt
for some constant ¢ not depending on t.
e For homogeneous equations with constant coefficients:
ay”" +by’ +cy =0,

finding two solutions y; and y amounts to finding the roots of the character-
istic equation

ar’> +br+c=0.

e For non-homogeneous equations we have two methods:
1. Method of undetermined coefficients: if g(¢) is a sum or product of ex-
ponentials, polynomials, cosine and sine.

2. Variation of parameters: for more general linear equations where the
solution is of the form y(t) = uy (¢)y1(t) + ua(t)y2(2).



4.1 General theory
The general nth order linear ODE is of the form
Y™+ Paa (8)y" D 4+ Pu(t)y + Po(t)y = (1),

and for an IVP we prescribe initial conditions

y(to) =xo0, ¥y'(to) =21, ..., y(n_l)(to) =Tp-1-
We first state the abstract existence and uniqueness theorem.

Theorem 4.1 (Existence and Uniqueness). Let I ¢ R be an open interval and
suppose g, Py, Py, ..., P,_1 are continuous functions in I. Fortgel and xg,...,x, 1 €
R there is exactly one solution to the IVP

{y(”) + P ()y D + -+ P (t)y + Po(t)y = g(¢),

y(to) =0, y'(to) =z1, ..., Yy (t)=zp1.

In the following we will mainly focus on homogeneous equations, i.e., we set
g=0.

Definition 4.1. We say that the functions fi,..., f, are linearly independent
on the interval I if

arfri(t) +- - +a,fu(t)=0 Vtel

=>aq;=--=a,=0.

Otherwise, we say that the functions f1,..., f, are inearly dependent.

Example 4.1. Given functions fi(t) =1, fo(t) =t, f5(t) = t? defined on the interval
I =R, suppose there are constants oy, s, a3 such that

CYlfl (t) + CYQfQ(t) + Oégfg(t) =0q + Oézt + 063t2 =0 Vtel. (41)

Then, in order for the above equality to hold for allt e I =R, it must be true at any
three distinct points in I. It is convenient to choose t =0, t =1, t = -1, leading to
three equations

061:0, Oé1+062+063=0, a1 —ag +ag=0.

The first equation gives a; = 0, and the second and third equations then give ag =
as =0, thus there does not exist a set of non-zero constants (a1, g, ag) for which the
condition (4.1)) is satisfied, which then implies that f1, fa, f3 are linearly independent
m I =R.

Similar to the second order case, we have the following principle of superposition:



Theorem 4.2 (Principle of superposition). Let y1,...,y, be solutions to the homo-
geneous equation

y™ 4 P () y™ Y+ Pty + Py(t)y =0,
then, for any constants cy,...,c, € R, the function

G(t) = crya(t) + -+ + ol (1)
15 also a solution to the homogeneous equation.
We also have an analogue to the Wronskian:

Definition 4.2. Given functions fi,..., f, that are differentiable up to order n—1,
we define the Wronskian W as

fi for o fa
W =det| T )
0 g g
The natural question is: given n solutions vy, ...,y, to the homogeneous equa-

tion, can every solution ¢ to the homogeneous equation be expressed as a linear
combination of yy,...,y,?

Theorem 4.3. If Fy,..., P,_1 are continuous functions in I, and yi,...,y, are so-
lutions to the homogeneous equation satisfying W (yi,...,yn)[to] #0 for some tye I,
then every solution ¢ to the homogeneous equation can be expressed as a linear combi-
nation of y1,...,Yn. In this case we call (y1,...,y,) a fundamental set of solutions
to the homogeneous equation.

Let us remark that the above theorem gives
Wy, yn)[t] #0= (y1,...,y,) are linearly independent.

Again, the converse is not true in general, unless y,...,y, are solutions to some
homogeneous equation, then the converse is true.

Theorem 4.4. Let yy,...,y, be linearly independent solutions to the homogeneous
equation

y ™+ B (8)yU ) e+ Pu(t)y + Bo(t)y =0,
fortel. Then, the Wronskian W (yi,...,y,)[t] is non-zero in I.

Proof. Suppose the conclusion is false, i.e., there is at least one point ¢y € I where
the Wronskian is zero. Then, consider the equation

ayr (t) + -+ + apyn(t) =0,



for constants aq, ..., a,. Differentiating repeatedly leads to

aryy (8) + -+ any, (1) = 0,

alyin_l)(t) +eeet anyy(zn_l)(t) =0.

In particular we obtain after substituting ¢ = t,

y1(to) ya(to) - ynlto) o 0
y1(to) vs(to) - (o) a |_| O
w ) V() () J\an )\ 0
Since the Wronskian is zero at t = ¢, there exists a non-zero solution (aj,...,a})

to the above matrix problem. Defining the function

¢(t) = ajya(t) + -+ agyn(t),

where thanks to the principle of superposition, ¢ is also a solution to the homoge-
neous equation. Furthermore, at t = ty, ¢ satisfies the initial conditions

gb(tO) = 07 Qb,(to) = 07 ce 7¢(n_1)(t0) = 0.

But the solution z(¢) = 0 for ¢ € I is also a solution to the IVP with zero initial
conditions. Consequently, by the Uniqueness of solutions to IVP we find that ¢(t) =
0 for t € I. Consequently we have found non-zero constants aj,...,a; such that

ajy(t) +--+aty,(t)=0 Vtel.

This contradicts with the linear independence of y, ..., y,. O

Finally, we state an analogous result to Abel’s theorem:

Theorem 4.5 (Abel’s theorem). Let y1,...,y, be solutions to the homogeneous
equation

y™ + P (H)y™ Y 4+ Pty + Py(t)y =0,
fortel. Then,
Wy, ..., yn)[t] = ce”/ Pt dt
for a constant ¢ not dependent on t e I.

Proof. The idea is to derive an equation satisfied by the Wronskian. From properties
of matrix determinants, we see that

cd d

b d / ’ / r_ a v
d‘—E(ad—bc)—ad+ad—bc—60—‘ . d‘+




Hence, we can deduce

Y1 Y2 Yn hn Y2 - Un
d d| Yo -y vioov oy
—W(y1,--,yn)[t] = — : : . S S S .
dt (v Yn)[t] dt : : . : : : . :
n-1 n-1 n-1 n n n
TS S 7 B VS 7R T
Technically, we should have
i Yo - Un 7 Y2 o Y
d / !/ ! 1 1 144
Dypg| 4 % W
n—-1 n—1 n-1 n—1 n-1 n—1
S SR B 7 S P S
hn Y2 - Yn
4 !/ A

But noting that in the first n—1 determinants, there is always a repeated row, hence
the the first n — 1 determinants are zero and only the last determinant survives.
Using that for each 1 <k <n,

%m=4%w$”—m—3%—%%,

then applying elementary column operations we find that

Y1 Yo e Yn
d Y Ys o Yn
a1 = ; =P, W[t],
- nflyin_l) _Pnflyén_l) e _Pnflygn_l)

4.2 Homogeneous equation with constant coefficients

Our aim is to study, for constants a,, # 0, a,_1,...,a9 € R the equation
any™ + a1y + -+ agy + agy = 0.

From the theory of second order equations, we consider a trial function ¢ = e™ for
r € R. Substituting this into the above equation gives the characteristic equation

‘anrn+---+alr+a0=0.

The characteristic polynomial is

Z(r)=a,r"+--+ar+ag|




From the fundamental theorem of algebra, every polynomial with real coefficients
of degree n has n complex roots. Hence

Z(r)=ap(r-ri)(r-re)...(r—mry),

where rq,...,r, are complex numbers. Note that real numbers are also complex
numbers.

Definition 4.3. Let P(x) be a polynomial of degree k in the variable x. A root r
has multiplicity m € N, m > 1, if there is another polynomial Sk_,(x) of degree
k —m such that Sy_,(r) #0 and

Pi(z) = Sp_m(x)(x=1)™.

The idea is to solve the characteristic equation to obtain roots ry,...,r,. Similar
to the second order equations, it is possible that roots are repeated (e.g., for ay” +
by’ + cy = 0 a repeated root of multiplicity two is r = —%) We divide the analysis
into the following cases:

Case 1. If the roots of Z(r) = 0 are all real and distinct, i.e., 7y #ry # -+ % 1y,
then we have the solutions

Y1 (t) = 6T1t7 ceey yn(t) = eTntv

and they form a fundamental set of solutions.

Exercise. Compute the Wronskian W (yy,. .., y,)[t] to show that (yi,...,y,) do
indeed form a fundamental set of solutions.

Case 2. If Z(r) =0 has n repeated real roots, i.e., 1y =ry =-+- =71, = ¢ and so
Z(r) = an(r —q)".
Then ¢ is a root of multiplicity n, and the solutions
y(t) =e?, yo(t) =te?, ..., yu(t)=t""tet

forms a fundamental set of solutions.

Case 3. If Z(r) =0 has k distinct real roots ry # ry # --- # 1, and one real root ¢
with multiplicity n - k£, i.e.,

Z(r)=ay(r=r)(r=ro)...(r—rg)(r- q)”_k.
Then, the solutions

yi(t) =€t y(t) = e,
Yea1 (t) = €, yraa(t) =te®, Ly, (t) =t e,



form a fundamental set of solutions.

By consideration of the above three cases, we can formulate the general rule: If
Z(r) = 0 has real roots ri,...,r, with multiplicity my,...,my, respectively. Then
my +---+mg =n and

Z(r) =an(r—=r))™(r—=mry)™ ... (r—rg)™.

Furthermore, the functions

rit rit mi1-1_r1t
yr=e, ya=te', Lo, Yy, =TT ET,

_ ,rot _ 4mo-1_rat _ gmp—1 7yt
ym1+1_627"'>ym1+m2_t e, L, yn =t ek

form a fundamental set of solutions.
Case 4. One pair of complex conjugate roots. Suppose Z(r) = 0 has n — 2 real

roots r1,...,7,_9 and a pair of complex conjugate roots r,_1,r, € C with r,_; =7,.
Setting

Tl = A+, Ty =A—1iL,

the functions

yr=et L ypa=em2t oy =eMcos(ut),  yn = eMsin(ut)

form a fundamental set of solutions.

Case 5. Repeated pairs of complex conjugate roots. Suppose

Z(r)y=apn(r=r1)...(r=r)(r=A+iu))*(r—(A-1ip))?,

where k + 2s = n. Note that if a complex root A + iy is repeated s times, then its
conjugate \—ip is also repeated s times. This means we need 2s linearly independent
solutions:

eMcos(ut), teMcos(ut), ..., tleMcos(ut),
eMsin(ut), teMsin(ut), ..., tleMsin(ut),
together with y; = e™t ... y. = e"! we obtain a fundamental set of solutions.

Let’s look at some examples:

Example 4.2. (1) Characteristic equation (r2+1)(r—1)2(r+2) =0, and so ry =1,
ro=—i, r3=1r4 =1 and r5 = =2. Therefore, we have

y1 = cost, yp =sint, ys =e', yy =te', ys = e,

(2) Characteristic equation (r?+1)2(r-1)3 =0, and sory =ry =i, r3 =14 = —1,
rs =16 =77 = 1. Therefore, we have

y1 = cost, ys = tcost, ys =sint, ys = tsint, ys = !, yg = te', y; = t3e'.



4.3 Non-homogeneous equations

Consider the non-homogeneous equation
Y™ + apy " 4+ ary + agy = g(t). (4.2)

If Y7 and Y, are both solutions to the non-homogeneous problem, then Y; — Y5
is a solution to the homogeneous equation. Given a fundamental set of solutions
(y1,---,Yn) to the homogeneous equation, we see that a general solution to the
non-homogeneous equation is

y(t) = crgn(t) +--- + cayn(t) + Y1),

where Y (¢) is a solution to the non-homogeneous equation.

4.3.1 Method of undetermined coefficients

Similar to second order equations, we now find a particular solution Y to the non-
homogeneous equation if g(t) is a sum/product of exponentials, cosine, sine
and polynomials. But the main difference is that the multiplicity of roots to the
characteristic equation can be greater than two. Therefore, higher powers of ¢
need to be multiplied to get the solution to the non-homogeneous equation.

We again investigate the cases:
(1) g(t) = ex' P (2),
(2) g(t) = ex Pu(t) cos(t)
(3) g(t) = et P, (t)sin(5t).
The particular solutions are
(1) Y(t) = t3e*Q(t), where
Qm(t) = A tm+-+ At + Ag

for undetermined coefficients A,,, ..., Ag, and s is the multiplicity of « if « is
a root of the characteristic equation, zero otherwise.

(2,3) Y(t) = t5e®[Qum(t) cos(ft) + Ry, (t) sin(5t) ], where @, R,,, are polynomials of
degree m with undetermined coefficients, and s is the multiplicity of a + i/ if
a+ 1 is a root of the characteristic equation, zero otherwise.

Example 4.3. Solve
y/// _ Sy" + 3y/ —y = 4€t'
For the homogeneous equation, the associated characteristic equation is

3 -3rt+3r-1=(r-1)>3=0,



and sory =ry=r3=1, i.e., a repeated eigenvalue of multiplicity three. So we set
yp=e', yp=te', y3=t,
and the complementary solution (to the homogeneous equation) is
Ye(t) = cre! + cotel + cst?el.

Since g(t) = 4et and so a =1 is a root of the characteristic equation. Therefore we
have to consider s =3 and a trial solution

Y (t) = At3el.
Computing gives
Y -3Y"+3Y'-Y =6Ael =4e! = A = g,

and so the general solution to the non-homogeneous ODE is

y(t) = cre’ + cote! + cst®el + gt?’et.

Another example involving sine:
Example 4.4. Solve
y™® +2y" +y = 3sint.

The characteristic equation corresponding to the homogeneous equation is

4 2rt+1=(r?2+1)(r2+1) =0

and so ry =13 =1, ro = 14 = —i, 1., a repeated pair of complex conjugate roots
(multiplicity is two). Then we see that

y1 =cost, Yo =sint, ys=tcost, Y4 =1tsint,
and the complementary solution to the homogeneous equation s
Ye(t) = c1cost + casint + czt cost + cqt sint.

For the non-homogeneous term g(t) = 3sint, we have a =0, 5 =1, and so s = 2.
Thus we consider a trial solution

Y (t) = At?sint + Bt? cost.
Then,

YW 42" +Y = -8Asint —8Bcost =3sint = B=0, A= —g.

Hence, the general solution to the non-homogeneous equation is

3
y(t) = cpcost + cosint + cgt cost + ¢yt sint — th sin t.



4.4 Variation of parameters

Analogous to second order equations, there is also a method to treat rather general
high order equations

y(”) + Pn_l(t)y(”_l) ++ Pi(t)y' + Poy=g(t), tel.

Suppose we have solutions ¥, ..., 4, to the homogeneous equation, which forms a
fundamental set of solutions. Then, the complementary solution is

ye(t) = cryr (t) + -+ + coyn(t).
Now, we consider a trial solution for the non-homogeneous equation of the form

Y(t) = ur(D)yr(t) + -+ un(t)yn(t)

for unknown functions uq,...,u,. Differentiating gives

YI(t) = ua )y () + -+ un 0y, (8) + 0t (g2 () + -+ 1y, () yn (8).

As before we set the constraint

ui (H)ya (1) +up(D)ya(t) +--- +up (Hyn(t) = 0},

so that the expression for Y’ simplifies to

YI(t) = ur (Dyr (1) +ua(B)ys () + -+ + un (D), (¢).

Computing Y and setting

up(B)y1(t) + .. up (D) y,(t) =0

leads to the simplified expression for the second derivative

YI(t) = un ()i (1) + -+ un(£)y, (1)-

Repeating this procedure (differentiating and then setting the sum of terms involving
the derivatives of uy,. .., u, to zero) leads to the n — 1 equations

WOy ™ (@) + o+ ul (D™ () =0 VI<m<n-2,
as well as a simplified expression for Y (m):
YO () = ug ()™ () + - +un (O™ (), m=1,...,n-1,
YO () = un ()™ (£) + -+ un (s (8) + uf (Dyf" ™ (8) + -+ up, (£)y" ™ (1),

So if Y is a particular solution to the non-homogeneous equation, substituting all
the expressions for Y and its derivative into the equation, and using that yi,...,y,
solve the homogeneous equation, we are lead to

uy ()" () + -l () () = g(t) |

10



Collecting all the expressions involving the first derivative of uq,...,u,, we obtain

n Y2 Yn-1 Un uf 0
yi Ys Yno1 Yn i 0
y%n 2) y(n 2) y(n 2) yr(ln—Z) U/;L_l 0
n—1 n—1 n—1 n—1
gy y" 1) yi ul, g(t)

Thus, the derivatives of the unknown functions uq,...,u, can be found by inverting
the matrix of derivatives. The determinant of the matrix is the Wronskian, which
is non-zero thanks to the fact that (yi,...,v,) forms a fundamental set of solutions.
Setting M (t) as the matrix, we solve

uj 0
ub 0
M(t) : = :
(T 0
Uy, g(1)

To invert M (t), we use Cramer’s rule, by setting

W 0 Yn
yi 0 U
Mz(t) = : ;
yf" K 0 yé" K
n—-1 n—1
y 1 )
i.e., replace the ith column of M (¢) with the vector (0,...,0,1)T. Then Cramer’s
rule gives
t)det M;(t
() - SOEL@)|
det M (t)

and by integrating we get an expression for w;(t). The particular solution to the
non-homogeneous equation is therefore
9(t)
gt [ S

V(1) =y (r) [ LI

However, in general the evaluation of the integrals can be difficult, but we can always
use Abel’s theorem to simplify, since

DdetM (1)
T detM()

t)det M, (t)

dt |
T detM(t)

det M (t) = W (ys, ..., yn)[t] = ce™ Pra® e,

We finish with one example.

Example 4.5. Solve

y" +1y =sec?(t) forte(-n/2,7/2).

11



The characteristic equation for the homogeneous problem is r3+1 =0 and so ry =0,
ro =1 and r3 = —i. Hence the complementary solution is

ye(t) = c1 + cycost + cysint.
By variation of parameters we look for a particular solution of the form
Y (t) = ury1 + ugya + uzys = uy (t) + ua(t) cost +us(t) sint,
with

uj +uhcost +ujsint =0,
—ubsint + ug cost =0,

~ubcost — uysint = sec?(t),

or equivalently

uy 0 1 cost sint
M@)| uy |= 0 , M(t)=| 0 -sint cost
ul sec?(t) 0 —cost —sint

Computing the determinant of M, we see that detM(t) =1. Now, define

0 cost sint 1 0 sint 1 cost O
M,(t)=| 0 -sint cost |, My(t)=] 0 0 cost |, M;s(t)=| 0 -sint
1 —cost -sint 0 1 -sint 0 —cost 1

it 1s easy to compute that
detMi(t) =1, detMy(t) =—cost, detMs(t)=—sint,
and so
up = f sec’(t) dt = tan(t),
Ug = / —sec?(t) cos(t) dt = —In(|sec(t) + tan(t)]),
Uz = f —sec?(t) sin(t) dt = —sec(t).
Hence, the particular solution is

Y (t) = tan(t) — cos(t) In(]sec(t) + tan(t)|) — sin(t) sec(t) = — cos(t) In(|sec(t) + tan(t)|).

12
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