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3 Second order linear equations

A second order linear ODE is of the form

p(t)y′′ + q(t)y′ + r(t)y = s(t)

for some given functions p, q, r and s. If p(t) ≠ 0 then we can express the second
order ODE alternatively as

y′′ + a(t)y′ + b(t)y = f(t), a(t) ∶= q(t)
p(t) , b(t) =

r(t)
p(t) , f(t) =

s(t)
p(t) .

In Chapter 1 we discussed that for a second order ODE we require two initial
conditions

y(t0) = y0, y′(t0) = y1,

for given constants t0, y0, y1. Note that we are not only prescribing that the solution
y(t) passes through the point (t0, y0), but also its slope y′(t) passes through the
point (t0, y1).

The theory for second order linear equations is more involved than the theory
for first order linear equations. We first introduce the following classification.

Definition 3.1 (Homogeneous equation). A second order linear ODE

p(t)y′′ + q(t)y′ + r(t)y = s(t), p(t) ≠ 0,

is called homogeneous if s(t) ≡ 0. Otherwise, if s(t) ≠ 0, the ODE is called
non-homogeneous.

Do not be confused about homogeneous first order ODE dy
dt = F (y/t) and

homogeneous second order ODE y′′ + a(t)y′ + b(y)y = 0.

Example 3.1 (Reduce to first order). If a general second order equation

y′′(t) = F (t, y, y′)
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for which the variable y does not appear, i.e.,

y′′(t) = F (t, y′).

Then, using the substitution v(t) = y′(t), we have

v′(t) = y′′(t) = F (t, y′) = F (t, v) ⇒ v′(t) = F (t, v) ,

that is, we now have a first order equation. As an example, solve the ODE

y′′ + ay′ = 0, a ∈ R, a ≠ 0.

Setting v = y′ the ODE satisfied by v is

v′ + av = 0⇒ v(t) = c exp(−at), c ∈ R.

Hence

y′(t) = c exp(−at) ⇒ y(t) = −c
a

exp(−at) + c0 , c0 ∈ R.

Note that we need two initial conditions to determine the constants c and c0.

Before we study the methods to solve second order equations, let us mention an
application.

Motivation - vibrations. Consider the motion of a mass on a spring. On one
end the spring the fixed to the ceiling and on the other end it is attached to an
object with mass m > 0. Before hanging the object, the spring has a length l > 0,
and after hanging the spring is stretched by a length L > 0 downwards.

If no additional force is acting on the mass-spring system, then there are just
two forces acting on the object: (1) the weight that acts downwards Fg = mg, and
(2) a restoring force Fs from the spring that tries to pull the object upwards. We
assume that the stretching L is small, so that the force Fs is proportional to L.
Denoting by the constant of proportionality by k, we now have Fs = kL. This is
commonly known as Hooke’s law and k is called the spring constant. The net
force (pointing downwards) is

F =mg − kL,

and if the object is in equilibrium, we must have F = 0 and so

mg = kL.

Now suppose we pull on the object and the spring is further extended, and
then let go. We want to measure the displacement u(t) of the object from its
equilibrium position. Note that u(t) can take both positive and negative values.
Positive values of u(t) means the object at time t is below the equilibrium position
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and negative values of u(t) means the object at time t is above the equilibrium
position.

Using Newton’s second law, and the fact that the acceleration is the second
derivative of the displacement, i.e., a = u′′, we have

mu′′(t) = f(t),

where f(t) is the net force acting on the object comprises of

(1) the weight Fg =mg acting downwards;

(2) a restoring force from the spring pulling the mass upwards Fs = −k(L + u);

(3) a resistance force Fd (air resistance/friction) that acts in the opposite of the
motion and is proportional to the speed u′. This is usually referred to as
viscous damping and Fd = −γu′ with constant γ > 0 (damping constant);

(4) an external force F (t) that models the up/down movement of the ceiling.

Altogether we arrive at the ODE

mu′′(t) =mg − k(L + u(t)) − γu′(t) + F (t)
⇒ mu′′(t) + γu′(t) + ku(t) = F (t)

if we also use mg = kL. To complete the model we specific two initial conditions

u(0) = u0, u′(0) = v0 ,

where u0 is the initial position (right before let go of the spring) and v0 is the initial
velocity.

3.1 Existence and Uniqueness

Let us first state the abstract result on the existence and uniqueness of solutions to
second order linear equations.

Theorem 3.1. Consider the IVP

y′′ + p(t)y′ + q(t)y = r(t), y(t0) = y0, y′(t0) = y1.

Suppose there is an open interval I ⊂ R such that t0 ∈ I, and the functions p, q, r are
continuous in I. Then, there is exactly one solution y(t) to the IVP for t ∈ I.

We will not discuss the proof of the theorem. It will be sufficient use the result
in this course.
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Example 3.2. The IVP

(t2 − 3t)y′′ + exp(t)y′ − sin(t + 3)y = 0, y(1) = 2, y′(1) = 1,

can be written as

y′′ + exp(t)
t2 − 3t

y′ − sin(t + 3)
t2 − 3t

y = 0, y(1) = 2, y′(1) = 1.

The functions p(t) = exp(t)
t2−3t and q(t) = sin(t+3)

t2−3t are continuous except at the points
t = 0 and t = 3. Since t0 = 1 the largest interval which the functions p and q are
continuous in (0,3). Hence, by Theorem 3.1, there exists a unique solution to the
IVP for t ∈ (0,3).

If we instead consider the initial condition y(4) = 2 and y′(4) = 1, then the largest
interval for which there exists a unique solution to the IVP is (3,∞).

Example 3.3 (Application of uniqueness). Find the solution to the IVP

y′′ + p(t)y′ + q(t)y = 0, y(t0) = 0, y′(t1) = 0,

for continuous functions p, q, r and given constants t0, t1 ∈ R.

Note that y ≡ 0 is a solution to the IVP. By Theorem 3.1 there is exactly one
solution, and so the only solution is y(t) ≡ 0.

3.2 Principle of superposition

For second order linear homogeneous equations we have the following.

Theorem 3.2 (Principe of superposition). If y1 and y2 are two solutions of the
ODE

a(t)y′′ + b(t)y′ + c(t)y = 0. (3.1)

Then for any constants c1, c2 ∈ R, the function c1y1(t) + c2y2(t) is also a solution to
the ODE.

A special case is when c1 = 0 we get the solution y2 and when c2 = 0 we get y1.

Take away message - From two solutions we can construct an infinite family
of solutions to the homogeneous linear ODE. That is, we can define a set of (general)
solutions

S ∶= {y ∶= c1y1 + c2y2 ∣ c1, c2 ∈ R}

to the ODE. Note that we have not included in the initial conditions, and it turns
out that if y = c1y1 + c2y2 is to be a solution to the IVP then some condition has to
hold.
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Given the initial conditions

y(t0) = x0, y′(t0) = x1,

can we find the constants c1 and c2 so that y(t) = c1y1(t) + c2y2(t) solve the IVP?
Plugging in the initial conditions leads to

c1y1(t0) + c2y2(t0) =x0,
c1y

′

1(t0) + c2y′2(t0) =x1,

or in a matrix form:

( y1(t0) y2(t0)
y′1(t0) y′2(t0)

)( c1
c2

) = ( x0
x1

) . (3.2)

We can solve for (c1, c2) by inverting the matrix, which requires the determinant

W ∶= y1(t0)y′2(t0) − y2(t0)y′1(t0) (3.3)

to be non-zero.

Definition 3.2 (Wronskian). The Wronskian W (y1, y2)[t0] is defined as

W (y1, y2)[t0] = y1(t0)y′2(t0) − y2(t0)y′1(t0) .

The idea is: if the Wronskian is non-zero, we can solve the matrix-vector problem
(3.2) by inverting the matrix and compute for the coefficients c1 and c2. This leads
to the following result.

Theorem 3.3. Let y1 and y2 be two solutions to the ODE

a(t)y′′ + b(t)y′ + c(t)y = 0.

For any (x0, x1) ∈ R2, it is always possible to choose two constants c1 and c2 such
that the function

y(t) = c1y1(t) + c2y2(t)

is a solution to the ODE and

y(t0) = x0, y′(t0) = x1

if and only if the Wronskian W (y1, y2) at t0 is non-zero.

Remark 3.1. Notice that y1 need not be equal to y2 as we did not specify any initial
conditions, i.e., the uniqueness part of Theorem 3.1 does not cause a contradiction
here.

What about the case where the Wronskian is zero? If W = W (y1, y2)[t0] = 0,
then we cannot solve the matrix-vector problem (3.2) in general. This means that
there are many initial conditions (x0, x1) for which no pair of constants (c1, c2) exists
so that y(t) = c1y1(t) + c2y2(t) is a solution to the IVP.
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Example 3.4. One can check that the functions y1(t) = exp(−2t) and y2(t) =
exp(−3t) are solutions to the ODE

y′′ + 5y′ + 6y = 0.

The Wronskian at t is

W (y1, y2)[t] = − exp(−5t)

which is non-zero for any t ∈ R. Therefore we can use y1 and y2 to construct a
family of solutions to the ODE.

The question that arises now is: “when can any solution to the ODE (3.7) be
expressed as a linear combination of two solutions y1 and y2?” A positive answer
would imply that if we know two solutions y1 and y2 to the ODE (3.7), then any
possible solution y to (3.7) can be expressed as y = c1y1 + c2y2 for some constants c1
and c2. Returning to the example, any solution y to the ODE y′′ + 5y′ + 6y = 0 must
be of the form

y(t) = c1 exp(−2t) + c2 exp(−3t)

for some constants c1 and c2, where are then determined by the initial conditions.

The answer to the question is given below.

Theorem 3.4. Let I be an open interval, p and q are continuous functions in I.
Let y1 and y2 be two solutions to the ODE

y′′ + p(t)y′ + q(t)y = 0

for t ∈ I. Then, any solution y to the ODE can be expressed as

y(t) = c1y1(t) + c2y2(t) (3.4)

for constants c1 and c2 if and only if there is a point t0 ∈ I such that the Wronskian
W (y1, y2)[t0] is non-zero at t0.

The theorem says that if at some point t0, the Wronskian is non-zero, then a
general solution to the ODE is given be the formula (3.4).

Proof. Let us consider the direction (⇐), that is, we assume there is a point t0 ∈ I
where the Wronskian W (y1, y2)[t0] is non-zero. Let φ be any solution to the ODE.
We need to show that φ can be written as a linear combination of y1 and y2.

Consider the IVP

y′′ + p(t)y′ + q(t)y = 0, y(t0) = φ(t0), y′(t0) = φ′(t0). (3.5)

That is, the initial values are φ(t0) and φ′(t0). Then, a solution to the IVP is the
function φ itself. Since the Wronskian is non-zero at t0, the matrix-vector problem

( y1(t0) y2(t0)
y′1(t0) y′2(t0)

)( c1
c2

) = ( φ(t0)
φ′(t0)

)
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admits a unique solution (c∗1, c∗2). This means that the function

z(t) ∶= c∗1y1(t) + c∗2y2(t)

is a solution to the IVP (3.5). By Theorem 3.1, there is only one solution to the
IVP, therefore

φ(t) = z(t) = c∗1y1(t) + c∗2y2(t).

For the converse (⇒) we prove by contrapositive, which amounts to show that
if there is no points where the Wronskian is non-zero, then every solution φ to the
ODE cannot be written as a linear combination of y1 and y2. Suppose for all
t0 ∈ I, W (y1, y2)[t0] = 0. Then by Theorem 3.3, there exists initial conditions x0, x1
such that the matrix-value problem (3.2) has no solution. That is, we cannot find
constants c1, c2 such that

c1y1(t0) + c2y2(t0) =x0,
c1y

′

1(t0) + c2y′2(t0) =x1.

In particular, if φ is a solution to the IVP with initial conditions (x0, x1). Then, we
see that it is not possible to write φ as a linear combination of y1 and y2.

Theorem 3.4 says that once we know two solutions y1 and y2 to the ODE, and
if the Wronskian W is non-zero at some point t0 ∈ I, then we know what a general
solution to the ODE looks like. In particular we can express every solution to the
ODE as a linear combination of y1 and y2. In this regard, we say that (y1, y2) form
a fundamental set of solutions to the ODE.

Definition 3.3 (Fundamental set of solutions). A pair of functions (y1, y2) is called
a fundamental set of solutions to the ODE

y′′ + p(t)y′ + q(t)y = 0

if any solution y to the ODE can be written as

y(t) = c1y1(t) + c2y2(t)

for some constants c1, c2.

Example 3.5. For the ODE

2t2y′′ + 3ty′ − y = 0, t > 0,

the functions y1(t) = t1/2 and y2(t) = t−1 are solutions. Let us compute the Wronskian

W (y1, y2)[t] = −
3

2
t−3/2,

which is non-zero for t > 0. Therefore we can deduce that (y1, y2) form a fundamental
set of solutions for the ODE, and a general solution y to the ODE can be expressed
as

y(t) = c1t1/2 + c2t−1,

for some constants c1, c2.
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Does a fundamental set of solutions always exists? This is answered in the next
theorem.

Theorem 3.5 (Existence of fundamental set of solutions). Let I be an open interval
of R, p and q are continuous functions in I. For any t0 ∈ I, let y1(t) be the (unique)
solution to the IVP

y′′ + p(t)y′ + q(t)y = 0, y(t0) = 1, y′(t0) = 0,

and y2(t) be the (unique) solution to the IVP

y′′ + p(t)y′ + q(t)y = 0, y(t0) = 0, y′(t0) = 1.

Then, (y1, y2) forms a fundamental set of solutions to the ODE.

Note that the existence of y1 and y2 to the corresponding IVPs is guaranteed by
Theorem 3.1. By Theorem 3.4 it suffices to show that the Wronskian W (y1, y2)[t0]
is non-zero. Computing gives

W (y1, y2)[t0] = 1.

The idea behind the special choice of initial conditions for y1 and y2 is closely
related to a concept in linear algebra. Our goal is to find an expression for the
general solution of a second order linear ODE in terms of two (known) solutions y1
and y2. However the method we studied above does not work if y1 is not different
from y2. Borrowing an idea from linear algebra we make the following definition.

Definition 3.4 (Linear independence). Let n ∈ N be fixed, and consider n func-
tions x1(t), . . . , xn(t) defined on an interval I ⊂ R. We say that x1, . . . , xn are
linearly independent if the only solution of

α1x1(t) + ⋅ ⋅ ⋅ + αnxn(t) = 0 ∀t ∈ I

is α1 = ⋅ ⋅ ⋅ = αn = 0.

For two functions, linear independence means one function is not a constant multiple
of the other. Since, if x1 and x2 are proportional on I then for some constant c ≠ 0
we have

x1(t) = cx2(t) ⇒ x1(t) − cx2(t) = 0.

Conversely, if x1 and x2 are linearly dependent, then there are constants a1, a2 ≠ 0
such that

a1x1(t) + a2x2(t) = 0⇒ x1(t) =
−a2
a1

x2(t).

Example 3.6 (Two fundamental sets of solutions). Consider the ODE

y′′ − y = 0.
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Note that y1(t) = exp(t) and y2(t) = exp(−t) are solutions to the ODE. The Wron-
skian W (y1, y2)[t] = −2 ≠ 0 and so by Theorem 3.4 they form a fundamental set of
solutions.

However, the pair (exp(t), exp(−t)) does not satisfy the conditions in Theorem
3.5 at t0 = 0. Since by Theorem 3.4, any solution y to y′′ − y = 0 must be of the form

y(t) = c1 exp(t) + c2 exp(−t),

plugging in the initial condition y(0) = 1 and y′(0) = 0 gives a solution

z1(t) =
1

2
exp(t) + 1

2
exp(−t) = cosh(t).

Similarly, plugging in the initial condition y(0) = 0 and y′(0) = 1 gives a solution

z2(t) =
1

2
exp(t) − 1

2
exp(−t) = sinh(t).

Furthermore, the Wronskian W (z1, z2)[t] = cosh2(t) − sinh2(t) = 1, and so (z1, z2)
forms a fundamental set of solutions as stated by Theorem 3.5. This means that any
solution y to the ODE y′′ − y = 0 can also be expressed as

y(t) = d1 cosh(t) + d2 sinh(t)

for constants d1, d2.

From the above example, we see that there are more than one fundamental
set of solutions for a given ODE. Indeed, it has infinitely many fundamental sets.
But Theorem 3.5 says that there is always one.

A large part of the above results rely on having at hand two solutions y1 and y2
to the second order linear ODE. Although we have not discussed how to find them,
we can actually compute an expression for the Wronskian without any knowledge
of the explicit forms for y1 and y2. This is summarised in the next theorem.

Theorem 3.6 (Abel’s theorem). Let I be an open interval, p and q are continuous
in I. Suppose y1 and y2 are two non-zero solutions to the ODE

y′′ + p(t)y′ + q(t)y = 0.

Then, the Wronskian is given as

W (y1, y2)[t] = c exp(−∫ p(t) dt) ,

where the constant c depends on y1 and y2, but not on t. Consequently, W (y1, y2)[t] =
0 if and only if c = 0.

In particular, if we know that W (y1, y2)[t∗] = 0 for some t∗ ∈ I, then it holds
that W (y1, y2)[t] = 0 for all t ∈ I.

9



Proof. The idea is to derive an ODE for the Wronskian W . Going back to the ODE,
as y1 is a solution we have

y′′1 + p(t)y′1 + q(t)y1 = 0⇒ y2y
′′

1 + y2p(t)y′1 + y2q(t)y1 = 0.

Similarly, as y2 is a solution,

y1y
′′

2 + y1p(t)y′2 + y1q(t)y2 = 0.

Subtracting one from another gives

(y1y′′2 − y2y′′1 ) + p(t)(y1y′2 − y2y′1) = 0. (3.6)

Noting that

W (y1, y2)[t] = y1(t)y′2(t) − y2(t)y′1(t)
⇒W ′(y1, y2)[t] = y1(t)y′′2 (t) − y2(t)y′′1 (t),

from (3.6) we have

W ′ + p(t)W = 0,

which is a linear first order equation. By integrating factors we find the general
solution

W (y1, y2)[t] = c exp(−∫ p(t) dt)

for some constant c ∈ R. As a constant of integration, c does not depend on t.

Example 3.7. Previously we verified that the functions y1(t) = t1/2 and y2(t) = t−1
are solutions to

2t2y′′ + 3ty′ − y = 0, t > 0.

We computed the Wronskian as W (y1, y2)[t] = −(3/2)t−3/2. We check this with Abel’s
theorem. Writting the ODE in standard form

y′′ + 3

2t
y′ − 1

2t2
y = 0⇒ p(t) = 3

2t
, q(t) = − 1

2t2
.

Then,

W (y1, y2)[t] = c exp(−∫
3

2t
dt) = c exp(−3

2
ln(t)) = ct−3/2.

Then, on comparison we have c = −3/2.

Example 3.8. Given y1 = t1/2 is a solution to

2t2y′′ + 3ty′ − y = 0, t > 0,

find the other solution y2 to the ODE.
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Although we are missing a second solution y2, let us assume y2(t) exists and
compute the Wronskian:

W (y1, y2)[t] = y1(t)y′2(t) − y2(t)y′1 = t1/2y′2 −
1

2
t−1/2y2.

On the other hand, by Abel’s theorem

W (y1, y2)[t] = c exp(−∫
3

2t
dt) = ct−3/2.

Choosing c = 1, the equating yields an ODE for y2:

t1/2y′2 −
1

2
t−1/2y2 = t−3/2,

which is a first order linear equation. Computing the integrating factor µ(t) =
exp(− ∫ 1

2t dt) = t−1/2 we see that

y2(t) = t1/2 (∫ t−5/2 dt + d) = −2

3
t−1 + d t1/2.

In particular, if d = 0, we see that the function t−1 is also a solution to the ODE.
Hence, even if we only have one solution y1, we can find another solution y2 if the
Wronskian is non-zero.

Exercise. Check that if y1 solves y′′ +p(t)y′ + q(t)y = 0, then the function z which
is a solution to

y1(t)z′ − y′1(t)z = exp(−∫ p(t) dt)

satisfies z′′ + p(t)z′ + q(t)z = 0.

Based on the above results, the strategy to solve

y′′ + p(t)y′ + q(t)y = 0, t ∈ I,

can be summarised as follows:

(1) Find two solutions y1, y2 satisfying the ODE.

(2) Find t∗ ∈ I such that the Wronskian W (y1, y2)[t∗] is non-zero. Then, the
general solution to the ODE is

y(t) = c1y1(t) + c2y2(t)

for some constants c1, c2.

(3) If initial conditions are prescribed at some t0 ∈ I, compute c1 and c2 to deter-
mine the particular solution.

We now discuss how to find y1 and y2 for constant coefficients, i.e., p(t) and q(t)
are constants.
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3.3 Homogeneous equations with constant coefficients

The objective of this section is to study the solutions to the ODE

ay′′ + by′ + cy = 0 (3.7)

for fixed constants a, b, c ∈ R with a ≠ 0. In Example 3.1 we saw how to solve the
equation

y′′ + b
a
y′ = 0,

which has a general solution involving the exponential function. Hence, let us con-
sider substituting a trial function y(t) = exp(rt) for some constant r into the ODE.
This yields

(ar2 + br + c) exp(rt) = 0.

Since exp(rt) is positive, we obtain that

ar2 + br + c = 0 . (3.8)

The equation (3.8) is known as the characteristic equation for the ODE (3.7).
If we can find the roots of the characteristic equation, then we know that exp(rt),
where r is a root, is a solution to (3.7).

Since (3.8) is a quadratic equation, by the well-known quadratic formula, we see
that

r = −b ±
√
b2 − 4ac

2a
.

Notice that for different values of a, b, c we encounter the possibilities:

(1) Two distinct real roots r1, r2 if b2 > 4ac.

(2) Two complex roots (complex conjugate pairs) r1, r1 if b2 < 4ac.

(3) A repeated real root r if b2 = 4ac.

Immediately we see that the explicit formula for the solution y(t) to (3.7) will depend
heavily on the discriminant b2 − 4ac.

3.3.1 Two distinct real roots

In the case b2 − 4ac > 0, we obtain two real roots

r1 =
−b +

√
b2 − 4ac

2a
, r2 =

−b −
√
b2 − 4ac

2a
.

This gives us two functions

y1(t) = exp(r1t), y2(t) = exp(r2t).
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Let us now check if they are linearly independent as in Definition 3.4. Let α1, α2 ∈
R be constants such that

α1y1(t) + α2y2(t) = 0 ∀t ∈ I
⇒ α1 exp(r1t) + α2 exp(r2t) = 0.

Since r1 ≠ r2, the only possible way for the above equality to hold is if α1 = α2 = 0
(simply plugging in two different values of t). So y1 and y2 are linearly independent.

Let now check the Wronskian:

W (y1, y2)[t] = y1(t)y′2(t) − y2(t)y′1(t) = r2 exp((r1 + r2)t) − r1 exp((r1 + r2)t)
= (r2 − r1) exp((r1 + r2)t).

Since r1 ≠ r2 and the exponential is never zero, we see that the WronskianW (y1, y2)[t]
is positive for all t ∈ R.

Then, by Theorem 3.4, any solution y to the ODE ay′′ + by′ + cy = 0 where
b2 − 4ac > 0 can be expressed as a linear combination of y1 and y2. More precisely,
any solution y(t) to the ODE is of the form

y(t) = c1 exp(r1t) + c2 exp(r2t) (3.9)

for some constants c1 and c2.

Exercise: Check by differentiating to see that (3.9) is a solution to the ODE.

To determine the values of c1 and c2, suppose we have the IVP

ay′′ + by′ + cy = 0, y(t0) = x0, y′(t0) = x1.

Then, a simple calculation shows that

c1 exp(r1t0) + c2 exp(r2t0) = x0,
r1c1 exp(r1t0) + r2c2 exp(r2t0) = x1.

Upon rearranging leads to

c1 =
x1 − x0r2
r1 − r2

exp(−r1t0), c2 =
x0r1 − x1
r1 − r2

exp(−r2t0).

As r1 ≠ r2, the above expressions always make sense.

Example 3.9. Find the general solution to the ODE

y′′ + 9y′ + 20y = 0.

As before we consider a trial function y(t) = exp(rt) and after substituting, we obtain
the characteristic equation

r2 + 9r + 20 = (r + 4)(r + 5) = 0.

13



This means that we have two real roots r1 = −4 and r2 = −5. Hence, the general
solution is

y(t) = c1 exp(−4t) + c2 exp(−5t), c1, c2 ∈ R.

Let us note that, as t →∞, the solution y(t) will tend to zero. This behaviour does
not depend on the sign of c1 and c2, since the exponents are both negative in this
case.

Example 3.10. Find the general solution to the ODE

y′′ − y′ − 42y = 0.

We obtain as the characteristic equation

r2 − r − 42 = (r − 7)(r + 6) = 0.

This gives r1 = 7 and r2 = −6 and the general solution is

y(t) = c1 exp(7t) + c2 exp(−6t), c1, c2 ∈ R.

Note that as the function c2 exp(−6t) → 0 as t→∞, and so we have

y(t) →
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞ if c1 > 0,

−∞ if c1 < 0,

0 if c1 = 0.

Of course the value of c1 and c2 are determined by the initial conditions. But it is
important to point out that it is possible for the solution y to go to ±∞ with one of
the exponent is positive.

3.3.2 Complex roots

We now consider the case b2−4ac < 0. Then, the roots to the characteristic equation
ar2 + br + c = 0 is a complex-conjugate pair:

r1 = λ + iµ, λ = −b
2a
, µ =

√
4ac − b2, i ∶=

√
−1, r2 = r1 = λ − iµ .

Since the characteristic equation is obtained by substituting the trial function y(t) =
exp(rt), we obtain two functions

y1(t) = exp(r1t) = exp((λ + iµ)t), y2(t) = exp(r2t) = exp((λ − iµ)t) .

14



Euler’s formula: Due to the imaginary number i appearing in the formulae for
y1 and y2, we use the well-known Euler’s formula: For any real number x ∈ R,

exp(ix) = cos(x) + i sin(x) .
As a consequence of the symmetries of cos and sin, we also have

exp(−ix) = cos(x) − i sin(x).
Furthermore, applying the general rule

exp(a + b) = exp(a) exp(b) for a, b ∈ C,
we now arrive at

y1(t) = exp(λt)(cos(µt) + i sin(µt)), y2(t) = exp(λt)(cos(µt) − i sin(µt)) .
Note that there is a common factor exp(λt) appearing in both solutions. One can
also check that

y1(t) = exp(λt)(cos(µt) − i sin(µt)) = y2(t),
so that y2 is the complex conjugate of y1.

Let us first check if y1 and y2 are linearly independent. Suppose there are con-
stants α1, α2 ∈ R such that

α1y1(t) + α2y2(t) = 0 ∀t ∈ I
⇒ eλt((α1 + α2) cos(µt) + i(α1 − α2) sin(µt)) = 0.

The exponential is non-zero for all t ∈ R, and so to make the above expression zero,
we need

α1 + α2 = 0, α1 − α2 = 0⇒ α1 = α2 = 0.

So y1 and y2 are linearly independent.

Let us now check the Wronskian. Using the differentiation formula

d

dt
exp(iqt) = iq exp(iqt) for q ∈ R,

we find that

W (y1, y2)[t] = y1(t)y′2(t) − y2(t)y′1(t)
= e(λ+iµ)t(λ − iµ)e(λ−iµ)t − (λ + iµ)e(λ+iµ)te(λ−iµ)t

= e2λt(λ − iµ − λ − iµ) = −2iµe2λt.

Since the exponential is never zero for t ∈ R, and µ is non-zero (otherwise we will
not have b2 − 4ac < 0), the Wronskian is non-zero for all t ∈ R.

Then, by Theorem 3.4, any solution y to the ODE ay′′ + by′ + cy = 0 where
b2 − 4ac < 0 can be expressed as a linear combination of y1 and y2. More precisely,
any solution y(t) to the ODE is of the form

y(t) = eλt ((c1 + c2) cos(µt) + i(c1 − c2) sin(µt))

or y(t) = eλt (d1 cos(µt) + d2i sin(µt)) .
(3.10)

for some constants d1 and d2.
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Exercise: Check by differentiating to see that (3.10) is a solution to the ODE.

Although we have a solution expressed in (3.10) it is a complex-valued function.
Since the coefficients of the ODE are real numbers, it would be better for us to
obtain a real-valued function as a solution. It turns out that we can do such a thing
with the following observation/theorem.

Theorem 3.7. Given an ODE

y′′ + p(t)y′ + q(t)y = 0

with p and q are continuous real-valued functions. If y(t) = u(t) + iv(t) is a
complex-valued solution to the ODE with u and v real-valued functions, then its
real part u(t) and its imaginary part v(t) are also solutions to the ODE.

Proof. Substituting the complex-valued solution into the ODE gives

0 = u′′(t) + iv′′(t) + p(t)u′(t) + ip(t)v′(t) + q(t)u(t) + iq(t)v(t)
= (u′′(t) + p(t)u′(t) + q(t)u(t)) + i(v′′(t) + p(t)v′(t) + q(t)v(t)).

A complex number is zero if and only if its real part and imaginary part are both
zero. On the LHS we have zero and on the RHS we have a complex number for
every t ∈ I. Therefore we must have

u′′ + p(t)u′ + q(t)u = 0, v′′ + p(t)v′ + q(t)v = 0.

So, from y1 and y2, we get the real-valued functions

u(t) = eλt cos(µt), v(t) = eλt sin(µt).

It is clear that u and v are linearly independent, and computing the Wronskian

W (u, v)[t] = u(t)v′(t) − v(t)u′(t)
= eλt cos(µt)eλt (λ sin(µt) + µ cos(µt)) − eλt sin(µt)eλt (λ cos(µt) − µ sin(µt))
= e2λtµ(cos2(µt) + sin2(µt)) = µe2λt

which is non-zero for all t ∈ I as µ ≠ 0.

Thus by Theorem 3.4 we see that any solution y to the ODE ay′′ + by′ + cy = 0
with b2 − 4ac < 0 can be expressed as

y(t) = c1eλt cos(µt) + c2eλt sin(µt) . (3.11)

The advantage of this expression over (3.10) is that y is a real-valued function.
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Example 3.11. Solve the IVP

y′′ + y′ + 9.25y = 0, y(0) = 2, y′(0) = 8.

The characteristic equation is

r2 + r + 9.25 = 0,

with roots

r1 = −
1

2
+ 3i, r2 = −

1

2
− 3i ⇒ λ = −1

2
, µ = 3.

The general solution is

y(t) = e− 1
2
t(c1 cos(3t) + c2 sin(3t))

for some constants c1, c2 ∈ R. Using the initial conditions we have

y(0) = c1 = 2, y′(0) = −1

2
c1 + 3c2 = 8 ⇒ c1 = 2, c2 = 3.

Hence the particular solution is

y(t) = e− 1
2
t(2 cos(3t) + 3 sin(3t)).

Similar to the case of two real roots, we now investigate the possible behaviour
of the solution (3.11) as t→∞.

(1) If λ = 0, then (3.11) becomes

y(t) = c1 cos(µt) + c2 sin(µt).
In this case, the solution y is an oscillation with constant amplitude. The
amplitude will depend on the values of c1 and c2, which is worked out by the
initial conditions.

(2) If λ > 0, then due to the factor eλt the amplitude of the oscillation with grow
(exponentially) in time.

(3) If λ < 0, then due to the factor e−λt, the amplitude of the oscillation with
decay (exponentially) in time, in this case we can say that y(t) → 0 as t→∞.

3.3.3 One repeated real root

The last case is when b2−4ac = 0 and we have a repeated root to the characteristic
equation. The quadratic formula yields

r1 = r2 = −
b

2a

as solutions to the characteristic equation ar2+br+c = 0. The problem is immediately
apparent: both roots gives the same function

y1(t) = y2(t) = exp(− b

2a
t) .

But for our developed theory we require at least two linearly independent solutions
to the ODE. It is not obvious how to find a solution solution that is linearly
independent to y1(t) = exp(− b

2at).
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Idea: Use the Wronskian (see Example 3.8). By Abel’s theorem, if y1 = exp(− b
2at)

and y2 are two solutions to the ODE ay′′ + by′ + cy = 0 with b2 = 4ac, then we know
that the Wronskian is

W (y1, y2)[t] = d exp(−∫
b

a
dt) = d exp(− b

a
t)

for some constant d ∈ R. On the other hand we have

W (y1, y2)[t] = y1(t)y′2(t) − y′1(t)y2(t) = e−
b
2a
ty′2(t) +

b

2a
e−

b
2a
ty2(t).

Choosing d = 1, and putting things together we have

e−
b
2a
ty′2(t) +

b

2a
e−

b
2a
ty2(t) = e−

b
a
t⇒ y′2(t) +

b

2a
y2(t) = e−

b
2a
t .

This is a first order linear ODE for y2, and using the method of integrating factors
we have

y2(t) = te−
b
2a
t

where we have neglected any constants of integration.

Let us now check the linear independence for y1 = e−
b
2a
t and y2 = te−

b
2a
t: Suppose

α1 and α2 are two constants such that

α1y1(t) + α2y2(t) = 0 ∀t ∈ I
⇒ e−

b
2a
t(α1 + tα2) = 0.

Since the exponential is never zero, for α1+ tα2 to be zero for all t ∈ I, we must have
α1 = α2 = 0.

For the Wronskian we compute and see that

W (y1, y2)[t] = e−
b
2a
t(e− b

2a
t − b

2a
te−

b
2a
t) + b

2a
te−

b
a
t = e− b

a
t ≠ 0.

Thus by Theorem 3.4 we see that any solution y to the ODE ay′′ + by′ + cy = 0
with b2 − 4ac = 0 can be expressed as

y(t) = c1e−
b
2a
t + c2te−

b
2a
t (3.12)

for constants c1, c2 ∈ R.

Example 3.12. Solve the IVP

y′′ + 4y′ + 4y = 0, y(0) = 2, y′(0) = 1.

The characteristic equation is

r2 + 4r + 4 = (r + 2)2 = 0.
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This gives us a repeated root r = 2. The general solution is

y(t) = c1e−2t + c2te−2t.

Using the initial conditions we find that

y(0) = c1 = 2, y′(0) = −2c1 + c2 = 1 ⇒ c1 = 2, c2 = 5.

Hence the particular solution is

y(t) = 2e−2t + 5te−2t.

We now investigate the behaviour of the solution as t →∞. Note that if b
2a > 0,

then

e−
b
2a
t, te−

b
2a
t → 0 as t→∞.

Meanwhile, if b
2a < 0, then

e−
b
2a
t, te−

b
2a
t →∞ as t→∞.

Roughly speaking we can summarise

y(t) = (c1 + c2t)e−
b
2a
t →

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if b
2a > 0,

∞ if b
2a < 0, c2 > 0,

−∞ if b
2a < 0, c2 < 0.

Summary. For the second order linear ODE

ay′′ + by′ + cy = 0

with constants a, b, c. Let r1 and r2 be the roots to the characteristic equation

ar2 + br + c = 0.

• If b2 > 4ac, then r1 and r2 are real numbers, and the general solution is given
as

y(t) = c1er1t + c2er2t.

• If b2 < 4ac, then r1 and r2 are complex numbers such that r1 = λ + iµ and
r2 = r1 = λ − iµ for real numbers λ,µ. Then, the general solution is given as

y(t) = eλt(c1 cos(µt) + c2 sin(µt)).

• If b2 = 4ac, then r1 = r2 = r. Then the general solution is given as

y(t) = c1e−
b
2a
t + c2te−

b
2a
t.
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3.4 Reduction of order

In the above we used the Wronskian to deduce that y2 = te−
b
2a
t is another solution

to the ODE ay′′ + by′ + cy = 0 when b2 = 4ac. There is also another method, called
reduction of order, which actually can be applied to a second order homogeneous
ODE with non-constant coefficient.

Consider the ODE

y′′ + p(t)y′ + q(t)y = 0.

Suppose we know y1(t) is a non-zero solution to the ODE. To find a second solution,
consider the function

y(t) = v(t)y1(t).

Then, product rule entails

y′(t) = v′(t)y1(t) + v(t)y′1(t), y′′(t) = v′′(t)y1(t) + 2v′(t)y′1(t) + v(t)y′′1 (t).

If y is a solution to the ODE, we find that

0 = y′′ + p(t)y′ + q(t)y
= v′′y1 + 2v′y′1 + vy′′1 + p(t)(v′y1 + vy′1) + q(t)vy1

⇒ 0 = y1v′′ + (2y′1 + p(t)y1)v′ .

This gives us a second order ODE for v that only involves v′′ and v′. Recalling
Example 3.1, we define a new function z ∶= v′ leading to

y1(t)z′ + (2y′1(t) + p(t)y1(t))z = 0.

Here we treat y1 and y′1 as given functions. Note that this is a first order linear ODE

dz

dt
+ 2y′1 + py1

y1
z = 0 ,

since y1 ≠ 0. Solving this gives us

v′(t) = z(t) = exp(−∫
2y′1 + py1

y1
dt)

= exp(−∫ p(t) dt − 2 ln(y1(t))) =
1

y21(t)
exp(−∫ p(t) dt) .

Integrating once more leads to

v(t) = ∫ (y1(t))−2e−∫ p(t) dt dt

and the second solution to the ODE is given as

y2(t) = y1(t)∫ (y1(t))−2e−∫ p(t) dt dt .
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Example 3.13. Consider the ODE

ay′′ + by′ + cy = 0,

with b2 = 4ac. We know that y1 = e−
b
2a
t is a solution. Now written in standard form

we see that

y′′ + p(t)y′ + q(t)y = 0 with p = b
a
, q = c

a
.

So from the above formula for v, we have

v(t) = ∫ e−
b
a
te

b
a
t dt = t ⇒ y2(t) = ty1(t) = te−

b
2a
t.

Remark 3.2. This method (Reduction of Order) can be used to find a second solu-
tion to the ODE if you already have one solution. The difficulty actually lies
in finding a first solution to the ODE.

3.5 Non-homogeneous equations

3.5.1 Method of undetermined coefficients

We now turn our attention to ODE of the form

y′′ + p(t)y′ + q(t)y = r(t), (3.13)

for given functions p, q and r that are continuous in an interval I. The corresponding
homogeneous equation is

y′′ + p(t)y′ + q(t)y = 0. (3.14)

Immediately we have the following observation. Let Z1 and Z2 be solutions to
the non-homogeneous problem (3.13). Then, the difference Z ∶= Z1 −Z2 satisfies

Z ′′ + p(t)Z ′ + q(t)Z = r − r = 0.

That is, the difference Z satisfies the homogeneous equation (3.14). If (y1, y2)
are a fundamental set of solutions to the homogeneous problem (3.14), then we can
write Z = Z1 −Z2 as

Z1(t) −Z2(t) = c1y1(t) + c2y2(t)

for some constants c1, c2.

From the above we actually derive a general expression for the solution to
the non-homogeneous equation (3.13). Let Y (t) denote a solution to (3.13), then
any solution y to (3.13) can be expressed as

y(t) = Y (t) + c1y1(t) + c2y2(t) ,

where (y1, y2) is a fundamental set of solutions to the homogeneous problem (3.14).
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Definition 3.5. For a solution expression

y(t) = c1y1(t) + c2y2(t) + Y (t)

to the ODE

y′′ + p(t)y′ + q(t)y = r(t),

we call the function

yc(t) ∶= c1y1(t) + c2y2(t)

the complementary solution, which is a solution to the homogeneous equation,
and the function Y (t) the particular solution, which is a solution to the non-
homogeneous equation.

This gives us a strategy to solving non-homogeneous second order linear ODEs:

(1) Obtain a fundamental set of solutions (y1, y2) to the homogeneous problem
(3.14).

(2) Find a solution Y (t) to the non-homogeneous problem (3.13).

(3) The general solution to (3.13) is then given as

y(t) = Y (t) + c1y1(t) + c2y2(t).

However, several difficulties remain:

• How do we find y1 and y2?

• How do we find Y (t)?

In Section 3.3 we saw how to find y1 and y2 for equations with constant coefficients:

ay′′ + by′ + cy = 0.

Therefore, in this section we now show how to obtain a solution Y to the ODE

ay′′ + by′ + cy = r(t)

for some specific forms of g. The idea is called the method of undetermined coefficients.

The idea is to make a guess on what the solution Y (t) could look like. There are
only certain classes of functions for r(t) which we have an idea of the solution Y (t)
could look like. In particular we consider the non-homogeneous term r(t) to be a
mixture of polynomials, exponentials, sine and cosine. Although this does not
solve the general problem, the method of undetermined coefficients is straightforward
to use.

Let us begin with an example.
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Example 3.14. Solve

y′′ − 3y′ − 4y = 3e2t.

In the standard form (3.13) we have

r(t) = 3e2t.

Since the exponential function reproduces itself through differentiation. A possible
choice for the particular solution Y would involve exponentials. Before that let us
solve the homogeneous problem:

y′′ − 3y′ − 4y = 0

and determine the complementary solution. The characteristic equation to the ho-
mogeneous ODE is

r2 − 3r − 4 = (r − 4)(r + 1) = 0.

The roots are r1 = 4, r2 = −1, and so a general solution to the homogeneous problem
is

yc(t) = c1e4t + c2e−t .

Returning to the non-homogeneous problem, assume Y (t) is of the form

Y (t) = Aeqt

for some coefficients A and q that are not determined yet, (hence the name
method of undetermined coefficients). Plugging into the non-homogeneous equations
gives

Y ′′ − 3Y ′ − 4Y = Aq2eqt − 3Aqeqt − 4Aeqt = A(q2 − 3q − 4)eqt = 3e2t.

Therefore, it makes sense to choose

q = 2, A(q2 − 3q − 4) = 3 ⇒ A = −1

2
⇒ Y (t) = −1

2
e2t.

Hence, the general solution y to the ODE y′′ − 3y′ − 4 = 3e2t can be expressed as

y(t) = c1e4t + c2e−t −
1

2
e2t .

Example 3.15. This time, solve

y′′ − 3y′ − 4y = 2sin(t).

We know from above that the complementary solution is yc = c1e4t + c2e−t. Since
the non-homogeneous term r(t) = 2 sin(t), a possible solution would involve sine and
cosine, so consider

Y (t) = a sin(αt) + b cos(βt)
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for undetermined coefficients a, b, α, β. Then, plugging the formula into the non-
homogeneous equations gives

Y ′′ − 3Y ′ − 4Y

= − aα2 sin(αt) − bβ2 cos(βt) − 3(aα cos(αt) − bβ sin(βt)) − 4(a sin(αt) + b cos(βt))
= sin(αt)[−aα2 − 4a] + cos(βt)[−bβ2 − 4b] + cos(αt)[−3aα] + sin(βt)[3bβ]
= 2 sin(t).

Since the RHS only involves sin(t), we can already set

α = 1, β = 1.

This simplifies the above calculation to

sin(t)[−5a + 3b] + cos(t)[−5b − 3a] = 2 sin(t).

Since there is no term involving the cosine on the RHS, we must have

−5a + 3b = 2, −5b − 3a = 0 ⇒ a = − 5

17
, b = 3

17
.

Therefore, the general solution y to the ODE y′′ −3y′ −4y = 2 sin(t) can be expressed
as

y(t) = c1e4t + c2e−t −
5

17
sin(t) + 3

17
cos(t) .

Remark 3.3. What if we only consider Y as a function of sine? Suppose we have
Y (t) = a sin(αt) for undetermined coefficients a and α. Plugging this into the ODE
gives

Y ′′ − 3Y ′ − 4Y = −aα2 sin(αt) − 3aα cos(αt) − 4a sin(αt)
= sin(αt)[−aα2 − 4a] + cos(αt)[−3aα] = 2 sin(t).

Again we choose α = 1, but now we have

−5a sin(t) − 3a cos(t) = 2 sin(t).

Since the RHS does not contain any cosine, we must have a = 0, but if a = 0, then
Y (t) = a sin(t) = 0. This leads to a contradiction, which means that our guess
Y (t) = a sin(αt) is not sufficient. Therefore we need to include a cosine into the
guess.

One more example but now r(t) is a polynomial.

Example 3.16. Solve

y′′ − 3y′ − 4y = t2 + t + 1.

We know the complementary solution is yc = c1e4t+ c2e−t. Since r(t) is a polynomial
of degree 2, a possible guess is that the particular solution Y is also a polynomial
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of the same degree, that is Y (t) = At2 +Bt + C for some undetermined coefficients
A,B,C. Then, plugging into the equation gives

Y ′′ − 3Y ′ − 4Y = 2A − 3(2At +B) − 4(At2 +Bt +C)
= −4At2 − (4B + 6A)t + (2A − 3B − 4C) = t2 + t + 1

Comparing coefficients immediately gives

A = −1

4
, B = 1

8
, C = −7

32
,

and so the general solution y to the ODE y′′ −3y′ −4y = t2 + t+1 can be expressed as

y(t) = c1e4t + c2e−t −
1

4
t2 + 1

8
t − 7

32
.

Example 3.17. Solve

y′′ − 3y′ − 4y = e−t.

Since r(t) is an exponential, we try Y (t) = Ae−t and determine the value of A.
However, it turns out that

Y ′′ − 3Y ′ − 4Y = A(1 + 3 − 4)e−t = 0 .

So no choice of A would satisfy the non-homogeneous ODE. What went wrong
here?

If you recall, a fundamental set of solutions to the homogeneous ODE y′′ − 3y′ −
4y = 0 is y1 = e4t and y2 = e−t. That is, the guess function Y (t) = Ae−t actually is
a solution to the homogeneous problem, and consequently, it cannot be a solution to
the non-homogeneous problem!

In this case, where the assumed form of the particular solution Y is a duplicate
of one of the solutions to the homogeneous problem, we can consider a new guess
for Y which looks like

Y (t) = Ate−t,

for undetermined constant A. This is similar to the fundamental set of solutions
(e− b

2a
t, te−

b
2a
t) for the ODE ay′′ + by′ + cy = 0 when b2 = 4ac. Trying this new guess

yields

Y ′′ − 3Y ′ − 4Y = −5Ae−t = e−t.

This means that we should take

A = −1

5
⇒ Y (t) = −1

5
te−t.

Thus a general solution y to the ODE y′′ − 3y′ − 4y = e−t is

y(t) = c1e4t + c2e−t −
1

5
te−t .
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Based on the above examples, we summarise: Given an ODE

ay′′ + by′ + cy = r(t).

1. First compute the complementary solution yc = c1y1+c2y2 to the homogeneous
problem ay′′ + by′ + cy = 0.

2. If r(t) is an exponential function eαt and is not a multiple of y1 or y2, then try
Y (t) = Aeαt for some constant A.

3. If r(t) is a multiple of y1 (or y2), then try Y (t) = (At2 + Bt)eαt for some
constants A and B.

4. If r(t) is a polynomial of degree k, then try Y (t) = ∑ki=0 aiti for constants
a0, . . . , qk.

5. If r(t) is a linear combination of sin(αt) and cos(αt), then try Y (t) = A sin(αt)+
B cos(αt) for some constants A,B.

It turns out that the same principle extends to the case where r(t) is a product
of exponentials, cosine and sines, and polynomials. Let us now outline a general
procedure.

Theorem 3.8. Suppose Y1 is a solution to

ay′′ + by′ + cy = k(t),

and Y2 is a solution to

ay′′ + by′ + cy = l(t).

Then the sum Y1 + Y2 is a solution to

ay′′ + by′ + cy = k(t) + l(t).

The above theorem shows that even if we have a complicated expression (involv-
ing exponentials, cosine, sine and polynomials) for the non-homogeneous term r(t),
if r(t) can be written as a sum r1 + r2 + ⋅ ⋅ ⋅ + rm, where each of the ri are simpler
so that the corresponding particular solution Yi can be found, and it turns out that
Y1 + ⋅ ⋅ ⋅ + Ym is a solution for the original problem involving r(t).

In the following, we define

Pn(t) = a0 + a1t + a2t2 + ⋅ ⋅ ⋅ + antn

for given functions a0, . . . , an.
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Case 1: r(t) = Pn(t). In the case the ODE becomes

ay′′ + by′ + cy = a0 + a1t + ⋅ ⋅ ⋅ + antn.

A possible guess

Y (t) = γtsQn(t) , (3.15)

where γ is an undetermined constant, Qn(t) = A0+A1t+⋅ ⋅ ⋅+Antn is a polynomial with
undetermined coefficients A0, . . . ,An, and s ∈ {0,1,2} is an exponent determined by
the following criterion:

s =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if c ≠ 0,

1 if c = 0, b ≠ 0,

2 if b = c = 0.

Case 2: r(t) = Pn(t)eαt. A possible guess is

Y (t) = γtsQn(t)eαt , (3.16)

where γ is an undetermined constant, Qn(t) = A0+A1t+⋅ ⋅ ⋅+Antn is a polynomial with
undetermined coefficients A0, . . . ,An, and s ∈ {0,1,2} is an exponent determined by
the following criterion:

s =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if α ≠ r1, α ≠ r2,
1 if α = r1, α ≠ r2 (or vice versa),

2 if r1 = r2 = α,

where r1 and r2 are the roots to the characteristic equation ar2 + br + c = 0. In fact
s is the multiplicity of α as a root of the characteristic equation.

Remark 3.4. Recall Example 3.17, where e−t was a solution to the homogeneous
problem, and the non-homogeneous term was r(t) = 2e−t. In this case we have
r2 = α = −1 and r1 = 4, therefore it is suggested to try a particular solution Y of the
form

Y (t) = γte−t.

Case 3: r(t) = eαtPn(t) cos(βt) or eαtPn(t) sin(βt). In this case, using the Euler
formula:

cos(βt) = 1

2
(eβit + e−βit), sin(βt) = 1

2

1

i
(eβit − e−βit) ,

the ODE becomes (for the case where r(t) = eαtPn(t) sin(βt))

ay′′ + by′ + cy = 1

2i
Pn(t) (e(α+βi)t − e(α−βi)t) .
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A possible guess is

Y (t) = γtseαt(Qn(t) cos(βt) +Rn(t) sin(βt)) , (3.17)

where γ is an undetermined constant, Qn(t) = A0+A1t+⋅ ⋅ ⋅+Antn, Rn(t) = B0+B1t+
⋅ ⋅ ⋅+Bntn are polynomials with undetermined coefficients A0, . . . ,An,B0, . . . ,Bn, and
s ∈ {0,1,2} is an exponent determined by the following criterion:

s =
⎧⎪⎪⎨⎪⎪⎩

0 if r1 (or r2) ≠ α + iβ,
1 if r1 = α + iβ (and thus r2 = α − iβ).

In light of Theorem 3.8 if we encounter an ODE of the form

ay′′ + by′ + cy = P (1)n (t) + P (2)n (t)eαt + P (3)n (t)eαt cos(βt),

where P
(1)
n , P

(2)
n and P

(3)
n are given polynomials of degree n, then we can first

compute

Y1 = γ1ts1Q(1)n (t)
solution to ay′′ + by′ + cy = P (1)n (t),

Y2 = γ2ts2Q(2)n (t)eαt

solution to ay′′ + by′ + cy = P (2)n (t)eαt,
Y3 = γ3ts3eαt(Q(3)n (t) cos(βt) +R(3)n (t) sin(βt))

solution to ay′′ + by′ + cy = P (3)n (t)eαt cos(βt),
so that Y1 + Y2 + Y3 is a particular solution to the original problem.

3.5.2 Why it works

We briefly outline a proof for the method of undetermined coefficients.

Case 1: r(t) = Pn(t). In this case the ODE is

ay′′ + by′ + cy = a0 + a1t + ⋅ ⋅ ⋅ + antn.
It is likely that a possible particular solution is also a polynomial, and so we try

Y (t) = A0 +A1t + ⋅ ⋅ ⋅ +Antn

for undetermined coefficients A0, . . .An. Substituting this into the ODE yields

a[n(n − 1)Antn−2 + ⋅ ⋅ ⋅ + 2A2] + b[nAntn−1 + ⋅ ⋅ ⋅ +A1] + c[Antn + . . .A1t +A0]
= a0tn + ⋅ ⋅ ⋅ + a1t + a0.

(3.18)

Equating coefficients of powers of t leads to the following sequence of equations

cAn = an,
cAn−1 + bnAn = an−1,

cAn−2 + b(n − 1)An−1 + an(n − 1)An = an−2,
⋮

cA0 + bA1 + 2aA2 = a0.
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Note that for each equation, only three terms appear on the LHS. Let’s consider the
case c ≠ 0, so that we immediately have

An =
an
c
,

and the remaining coefficients An−1, . . . ,A0 can then be worked out sequentially. This
means we can completely determine the coefficients An, . . . ,A0 for the particular
solution.

If c = 0, but b ≠ 0, then the polynomial on the LHS of (3.18) is of degree
n − 1, and since the polynomial on the RHS of (3.18) is of degree n, we cannot
satisfy the equation (3.18). Therefore, one way to match the degree is to consider
aY ′′(t)+bY ′(t) is a polynomial of degree n, which implies Y (t) must be a polynomial
of degree n + 1. Hence, we assume

Y (t) = t(Antn + ⋅ ⋅ ⋅ +A1t +A0). (3.19)

Note that there is no term in the polynomial that is a constant, but recognise that
a constant is a solution to the ODE when c = 0. By computing similar to (3.18),
substituting the new guess (3.19) into the ODE and matching order by order, we
arrive at

b(n + 1)An = an,
a(n + 1)nAn + bnAn−1 = an−1,

⋮
2aA1 + bA0 = a0.

Once again, as b ≠ 0, we have An = an
bn , and the other coefficients can be determined

in a systematic way. If c = b = 0 then we consider

Y (t) = t2(Antn + ⋅ ⋅ ⋅ +A1t +A0).

Since we require aY ′′(t) = antn + ⋅ ⋅ ⋅ + a0 and the only way to make Y ′′(t) to be a
polynomial of degree n is to consider Y (t) as a polynomial of degree n + 2.

Case 2: r(t) = eαtPn(t). The problem of determining a particular solution to the
ODE

ay′′ + by′ + cy = Pn(t)eαt

can be reduced to Case 1 by considering a substitution. Let

Y (t) = eαtu(t),

and by substituting this into the ODE we obtain

eαt(a[u′′ + 2αu′ + α2u] + b[u′ + αu] + cu) = eαtPn(t)
⇒ au′′ + (2aα + b)u′ + (aα2 + bα + c)u = Pn(t). (3.20)
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Determining a particular solution u to (3.20) is similar to Case 1, i.e., we should
take

u(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Antn + ⋅ ⋅ ⋅ +A0 if aα2 + bα + c ≠ 0,

t(Antn + ⋅ ⋅ ⋅ +A0) if aα2 + bα + c = 0, 2aα + b ≠ 0,

t2(Antn + ⋅ ⋅ ⋅ +A0) if aα2 + bα + c = 0, 2aα + b = 0.

In particular, observe that

aα2 + bα + c ≠ 0⇔ α not a root of chara. equ.

and so α ≠ r1, r2. Meanwhile, if aα2 + bα + c = 0 we have that α is one of the roots
r1 (or r2), but not both, since if α = r1 = r2, then we know the only possibility is

r1 = r2 = α = − b

2a
.

But since 2aα + b ≠ 0, this implies that the above cannot happen. For the last case,
the conditions aα2 + bα+ c = 0 and 2aα+ b = 0 means that α = − b

2a is a repeated root
of the characteristic equation.

Case 3: r(t) = eαtPn(t) cos(βt) or eαtPn(t) sin(βt). The two cases are similar,
and so let us consider only the case r(t) = eαtPn(t) sin(βt). We consider

Y (t) = eαt(Q(t) cos(βt) +R(t) sin(βt)),

for some functions Q and R, and upon differentiating

Y ′(t) = αeαt(Q(t) cos(βt) +R(t) sin(βt)) + eαtβ(−Q(t) sin(βt) +R(t) cos(βt))
+ eαt(Q′(t) cos(βt) +R′(t) sin(βt)),

Y ′′(t) = α2eαt(Q(t) cos(βt) +R(t) sin(βt)) + 2eαtαβ(−Q(t) sin(βt) +R(t) cos(βt))
+ 2αeαt(Q′(t) cos(βt) +R′(t) sin(βt)) + β2eαt(−Q(t) cos(βt) −R(t) sin(βt))
+ 2βeαt(−Q′(t) sin(βt) +R′(t) cos(βt)) + eαt(Q′′(t) cos(βt) +R′′(t) sin(βt)).

Plugging the above expression into the ODE yields

eαtPn(t) sin(βt) = aY ′′ + bY ′ + cY
= eαt cos(βt) [(aα2 − aβ2 + bα + c)Q + (2αa + b)(βR +Q′) + 2aβR′ + aQ′′]
+ eαt sin(βt) [(aα2 − aβ2 + bα + c)R + (2aα + b)(−βQ +R′) − 2aβQ′ + aR′′] .

Equating coefficients means that

(aα2 − β2 + bα + c)Q + (2αa + b)(βR +Q′) + 2aβR′ + aQ′′ = 0,

(aα2 − aβ2 + bα + c)R + (2aα + b)(−βQ +R′) − 2aβQ′ + aR′′ = Pn.
(3.21)

Observe that, α + iβ is a root of the characteristic equation if and only if

a(α + iβ)2 + b(α + iβ) + c = [aα2 − aβ2 + bα + c] + i(2aα + b)β = 0.

30



Using the fact that a complex number is zero if and only if the real and imaginary
parts are zero, we have

α + iβ is a root ⇔ a(α2 − β2) + bα + c = 0, (2aα + b)β = 0.

As the RHS of (3.21) are polynomials, it is likely that taking Q and R to be
polynomials would give a particular solution. The question is what is the degree.
Consider the case where α + iβ is not a root of the characteristic equation. Then,
(aα2−aβ2+bα+c) and (2aα+b)β are both not zero, then from the second equation of
(3.21) we have that the degree on the LHS would be the degree of R or Q (which ever
is higher). This is due to the fact that taking derivatives of a polynomial reduces the
degree. Therefore, for convenience, let’s take Q and R to have the same degree as
the polynomial Pn, i.e.,

Q(t) = Antn + ⋅ ⋅ ⋅ +A0, R(t) = Bnt
n + ⋅ ⋅ ⋅ +B0

However, if α + iβ is a root of the characteristic equation, then (3.21) simplifies
to

(2αa + b)Q′ + 2aβR′ + aQ′′ = 0,

(2aα + b)R′ − 2aβQ′ + aR′′ = Pn,

and from the second equation, we see that the degree of the LHS would be the
degree of R′ or Q′ (which ever is higher). This motivates us to take

Q(t) = t(Antn + ⋅ ⋅ ⋅ +A1t +A0), R(t) = t(Bnt
n + ⋅ ⋅ ⋅ +B1t +B0),

in order to match the degree with the RHS.

3.6 Variation of parameters

The method of undetermined coefficients is a straightforward method, but requires
that the non-homogeneous term r(t) to be in a special form. If we encounter an
ODE

y′′ − 3y′ + 2y = e3t

et + 1

then the method of undetermined coefficients does not apply. Therefore, we need
a more general method that in principle can be applied to any equation. One such
method is the variation of parameters.

We now outline a general theory. Consider a general ODE

y′′ + p(t)y′ + q(t)y = r(t), (3.22)

and suppose (y1, y2) forms a fundamental set of solutions to the homogeneous equa-
tion

y′′ + p(t)y′ + q(t)y = 0.
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For constant functions p(t) = p∗ and q(t) = q∗, we know how to derive a fundamental
set of solutions. The idea is as follows. Consider for some functions u1(t), u2(t)
such that the new function

y(t) = u1(t)y1(t) + u2(t)y2(t) (3.23)

solves the non-homogeneous equation. We now determine what equations u1 and u2
have to satisfy.

Differentiating (3.23) yields

y′ = u′1y1 + u1y′1 + u′2y2 + u2y′2.

In order to simplify the computations later, let us impose a condition

u′1y1 + u′2y2 = 0 .

Then the derivative becomes

y′ = u1y′1 + u2y′2. (3.24)

Differentiating again leads to

y′′ = u′1y′1 + u1y′′1 + u′2y′2 + u2y′′2 . (3.25)

Substituting (3.23)-(3.25) into the non-homogeneous ODE then gives

y′′ + p(y)y′ + q(t)y = u1(y′′1 + p(t)y′1 + q(t)y1) + u2(y′′2 + p(t)y′2 + q(t)y2)
+ u′1y′1 + u′2y′2

= u′1y′1 + u′2y′2 = r(t).

Hence, we obtain two conditions for u1 and u2:

u′1y1 + u′2y2 = 0, u′1y
′

1 + u′2y′2 = r(t) ,

which can be conveniently summarised in matrix notion

( y1 y2
y′1 y′2

)( u′1
u′2

) = ( 0
r

)

Notice that the matrix is invertible (and hence a solution (u′1, u′2) to the above
problem exists) if the determinant is non-zero. But the determinant is the Wron-
skian W (y1, y2)[t] which is non-zero since (y1, y2) is a fundamental set of solutions.
Therefore, we can compute

u′1(t) = −
y2r

W (y1, y2)
(t), u′2(t) = −

y1r

W (y1, y2)
(t) . (3.26)

Integrating gives

u1(t) = −∫
y2r

W (y1, y2)
(t) dt + d1, u2(t) = ∫

y1r

W (y1, y2)
(t) dt + d2, (3.27)

32



for constants d1, d2 ∈ R, and the general solution to the non-homogeneous equation
is

y(t) = (c1 + d1)y1 + (c2 + d2)y2 − y1∫
y2r

W (y1, y2)
(t) dt + y2∫

y1r

W (y1, y2)
(t) dt .

In fact, we can always take d1 = d2 = 0 in (3.27).

Let us summarise with a theorem.

Theorem 3.9. Let I ⊂ R be an open interval, p, q, r continuous on I. If (y1, y2) is
a fundamental set of solutions to the homogeneous equation y′′ + p(t)y′ + q(t)y = 0,
then a particular solution to the non-homogeneous equation y′′+p(t)y′+ q(t)y = r(t)
is

Y (t) = −y1∫
y2r

W (y1, y2)
(t) dt + y2∫

y1r

W (y1, y2)
(t) dt,

and the general solution to the non-homogeneous equation is

y(t) = c1y1(t) + c2y2(t) + Y (t)

for constants c1, c2 ∈ R.

Remark 3.5. This method is able to treat rather general second order ODEs (since
p(t) and q(t) need not be constants). However, it is not easy to find a fundamental
set of solutions (if p(t) and q(t) are not constant functions). Furthermore, another
difficulty lies in the evaluation of the integrals:

−∫
y2r

W (y1, y2)
(t) dt, ∫

y1r

W (y1, y2)
(t) dt

which may not be possible if r, y1, y2 are complicated functions.

Going back to the example (3.22), let us first look at the homogeneous problem

y′′ − 3y′ + 2y = 0,

which we know the general solution (complementary solution) is given as

yc(t) = c1et + c2e2t.

We now compute for u1 and u2, where we use

y1 = et, y2 = e2t, r = e3t

et + 1
, W (y1, y2)[t] = e3t,

and from (3.26), we see that

u′1(t) = −
e2t

et + 1
, u′2(t) =

et

et + 1
.
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Integrating gives

u1(t) = ln(et + 1) − et, u2(t) = ln(et + 1).

Hence, a candidate particular solution is

Ỹ (t) = u1y1 + u2y2 = et ln(et + 1) + e2t ln(et + 1) − e2t.

But since e2t satisfies the homogeneous equation, we can forget about the last term
in Ỹ and thus set

Y (t) = et ln(et + 1) + e2t ln(et + 1).

The general solution to the ODE (3.22) is

y(t) = c1et + c2e2t + et ln(et + 1) + e2t ln(et + 1).

Remark 3.6. When computing u1 and u2, note that the particular solution u1y1 +
u2y2 can be simplified.
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