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2 First order equations

2.1 Two linear ODE example

We begin our study with two examples of first order linear ODEs.

2.1.1 Example 1

For given real constants a, b, t0, y0, solve

⎧⎪⎪⎨⎪⎪⎩

dy
dt = ay + b,
y(t0) = y0.

This is a linear and autonomous ODE. Let us consider the case a = 0. Then the
ODE becomes

y′ = b, y(t0) = y0.

Integrating yields the general solution

y(t) = bt + c, c ∈ R,

and the initial condition gives the particular solution

y(t) = y0 + b(t − t0) .

For the case a ≠ 0, we rearrange the ODE into another form:

y′ = ay + b = a(y + b/a) ⇒ 1

y + b
a

dy

dt
= a.

If there exists a function H(y) such that H ′(y) = (y+b/a)−1, then the ODE becomes
(via the Chain rule)

H ′(y)dy
dt

= d

dt
H(y(t)) = a.

It turns out that

H(y) = ln(y + b/a),
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and so we have

ln(y(t) + b/a) = at + c, c ∈ R.

Taking exponential then leads to the general solution

y(t) = κ exp(at) − b
a
, κ ∶= exp(c).

Using the initial condition y(t0) = y0 we obtain the particular solution

y(t) = (y0 + b/a) exp(a(t − t0)) −
b

a
.

In summary we find that

y(t) =
⎧⎪⎪⎨⎪⎪⎩

y0 + b(t − t0) for a = 0,

(y0 + b/a) exp(a(t − t0)) − b
a for a ≠ 0.

This example shows that the explicit formula for the solution can depend on the
values of the given coefficients. Always keep this in mind before starting to solve
the ODE.

2.1.2 Example 2

For a given function p(t), find the general solution to

dy

dt
= p(t)y.

Note that y(t) ≡ 0 is one solution! Suppose that y(t∗) ≠ 0 for some t∗ ∈ I, then we
can rearrange the ODE into the form

1

y

dy

dt
= p(t) ⇒ d

dt
ln(y(t)) = p(t).

Integrating yields

ln(y(t)) = ∫ p(t) dt + c, c ∈ R,

and taking exponential gives the general solution

y(t) = κ exp(∫ p(t) dt) , κ ∶= exp(c).

Remark 2.1. In the above examples, it should have been

ln ∣y(t)∣ = ∫ p(t) dt + c.
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Once we take the exponential we find that

∣y(t)∣ = exp(∫ p(t) dt) exp(c).

Setting

κ =
⎧⎪⎪⎨⎪⎪⎩

exp(c) if y(t) > 0,

− exp(c) if y(t) < 0,
⇒ y(t) = κ exp(∫ p(t) dt) .

The sign of the constant κ does not matter once we use the initial condition to
determine its value.

2.2 Linear first order equations - method of integrating fac-
tors

In the above Example 2, we obtain that the general solution to the ODE

dy

dt
= p(t)y

is

y(t) = κ exp(∫ p(t) dt) ,

for some arbitrary non-negative constant κ. We now study the general linear first
order ODE:

⎧⎪⎪⎨⎪⎪⎩

dy
dt = p(t)y + q(t),
y(t0) = y0

(2.1)

for some given functions p(t), q(t) and constants t0 and y0. One example is the
equation for the motion of the falling object: mv′ =mg −γv, where we set y = v, p =
−γ/m and q = g. The method we use is called the method of integrating factors.

Idea: Multiply the ODE (2.1) by a function µ(t), leading to

µ(t)dy
dt

− µ(t)p(t)y(t) = µ(t)q(t). (2.2)

Suppose

µ(t)dy
dt

− µ(t)p(t)y(t) = d

dt
(µ(t)y(t)) , (2.3)

then, the multiplied ODE (2.2) becomes

d

dt
(µ(t)y(t)) = µ(t)q(t) ⇒ µ(t)y(t) = ∫ µ(t)q(t) dt + c , c ∈ R. (2.4)

If in addition, µ(t) is non-zero, we can divide by µ(t) and end up with the general
solution

y(t) = 1

µ(t) [∫ µ(t)q(t) dt + c] . (2.5)
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Definition 2.1. If such a function µ(t) exists satisfying (2.3), then we call µ(t) the
integrating factor.

But does such a function µ(t) exists? If it doesn’t then this is a useless method.
What is the equation satisfied by µ? From (2.3) we see that

µ(t)y′(t) − µ(t)p(t)y(t) = d

dt
(µy) = µ′(t)y(t) + µ(t)y′(t)

⇒ y(t) (dµ
dt

+ p(t)µ(t)) = 0.

The above equation is satisfied if y(t) = 0 or µ′(t) + p(t)µ(t) = 0. The first case
y(t) = 0 is not desirable, since if the initial condition y0 is non-zero, we have a
contradiction. Therefore, we consider the second case and obtain the equation

dµ

dt
= −p(t)µ (2.6)

as the ODE for µ. But this type of equation has been encountered before. From
Example 2, we see that the general solution is

µ(t) = κ exp(−∫ p(t) dt) , κ ∈ R≥0. (2.7)

Take note of the minus sign! The question is what should we take the value of
κ to be? Let us first substitute the formula (2.7) into the multiplied ODE (2.2):

κ exp(−∫ p(t) dt) dy
dt

− κ exp(−∫ p(t) dt)p(t)y(t) = κ exp(−∫ p(t) dt) q(t)

⇒ κ
d

dt
(e−∫ p(t) dty(t)) = κe−∫ p(t) dtq(t).

It turns out that κ appears on both sides of the equation, and thus we can cancel
out κ. In effect, we can choose κ = 1, which we will do so from now on. This implies
that we take the integrating factor µ(t) to be

µ(t) = exp(−∫ p(t) dt) , (2.8)

and the general solution y(t) to the ODE y′ = p(t)y + q(t) is given as

y(t) = e∫ p(t) dt [∫ e−∫ p(t) dtq(t) dt + c] . (2.9)

The particular solution and the constant c can be computed with the initial condition
y(t0) = y0, which we will not do here.

Example 2.1. Derive the general solution to the ODE

t
dy

dt
+ 2y = 4t2.
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Step 1. Write the ODE in the form y′ = p(t)y + q(t) and identify p and q:

t
dy

dt
+ 2y = 4t2⇒ dy

dt
= −2

t
y + 4t⇒ p(t) = −2

t
, q(t) = 4t.

Step 2. Compute the integrating factor µ(t):

µ(t) = exp(−∫ p(t) dt) = exp(∫
2

t
dt) = t2.

Step 3. Plug into the formula (2.9)

y(t) = 1

t2
[∫ t2 × 4t dt + c] = t2 + c

t2
.

Remark 2.2. The general solution y(t) = t2+ c
t2 , for c ≠ 0, is not defined at the point

t = 0. So far in the course, we have not really discussed the interval of definition
I ⊂ R. In this case, the general solution is defined only for t ∈ (−∞,0) ∪ (0,∞) =
R ∖ {0}. If the graph of y(t) is sketched we see that the graph has two parts, one to
the left of the y-axis and one to the right of the y-axis. Which part we take depends
on the initial condition.

If we consider an initial condition y(t0) = y0, where t0 > 0, then we choose the
right part - since we can determine the arbitrary constant c in the general solution
only in the interval (0,∞). In this case the interval of definition is I = (0,∞).
Similarly, if t0 < 0, then we choose the left part as the solution, with I = (−∞,0).
This example serves as a reminder that the solution y(t) to ODEs may not be defined
for all values of t ∈ R, and the initial condition plays a role in determining the
interval of definition.

2.3 Separable equations

The theory of first order linear ODEs is complete with the method of integrating
factors. We now turn to a subclass of ODEs that can be non-linear.

Example 2.2. Solve the following first order non-linear, non-autonomous ODE

⎧⎪⎪⎨⎪⎪⎩

dy
dt =

sin(t)
1−y2 ,

y(t0) = y0.

Idea: Bring the “y” to the LHS. Rearranging the ODE gives

(1 − y2)dy
dt

= sin(t).

Recognise that the LHS can be expressed as d
dtH(y(t)) by the Chain rule. In fact

H(y) = y − 1
3y

3. Hence, the general solution is

y(t) − 1

3
y(t)3 = − cos(t) + c, c ∈ R.
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Using the initial condition, the particular solution is

y(t) − 1

3
y(t)3 = cos(t0) − cos(t) + y0 −

1

3
y3

0.

One thing to observe is that there is no explicit expression for y(t) (due to the
non-linear function y(t)3). We call this an implicit solution to the ODE. This is
a typical characteristic of non-linear ODEs.

Definition 2.2 (Separable equation). A first order ODE y′ = f(t, y) is separable
if it can be written in the form

M(t) +N(y)dy
dt

= 0 (2.10)

for some functions M and N .

The key to solving separable equations is to recognise that N(y)dy
dt can be written

as d
dt(n(y(t)) by the Chain rule if the anti-derivative n of N exists. Suppose there

exist functions m and n such that

m′ =M, n′ = n.

Then (2.10) can be written as

d

dt
m(t) + d

dt
n(y(t)) = 0.

Integrating yields the general (implicit) solution

m(t) + n(y(t)) = c , c ∈ R. (2.11)

For the initial data y(t0) = y0 we compute to find the particular (implicit) solution

n(y(t)) − n(y0) =m(t0) −m(t) . (2.12)

Example 2.3. Let us return to the ODE y′ = p(t)y which has been discussed in
Example 2. This is a separable equation with

y′ = p(t)y⇒ −p(t) + 1

y

dy

dt
= 0⇒M(t) = −p(t), N(y) = 1

y
.

Hence, by the formula (2.11) the general solution is

−∫ p(t) dt + ln(y(t)) = c⇒ y(t) = exp(−∫ p(t) dt) exp(c).
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2.4 Transformation methods

2.4.1 Nonlinear to Linear

Let n be a real number, n ≠ 0,1, and p(t), q(t) be given functions. The Bernoulli equation
is a first order non-linear ODE of the form

dy

dt
+ p(t)y = q(t)yn . (2.13)

As this is a non-linear ODE we cannot use integrating factors. Moreover, it doesn’t
seem like the equation is separable. Let us move the nonlinearity yn to the derivative
by multiplying the whole equation with y−n:

y−n
dy

dt
+ p(t)y1−n = q(t). (2.14)

Now recognise that

d

dt
(y1−n) = (1 − n)y−ndy

dt
.

So (2.14) can be simplified to

d

dt
y1−n + (1 − n)p(t)y1−n = (1 − n)q(t). (2.15)

Then, considering a new variable v(t) = y1−n(t), (2.15) becomes

dv

dt
+ P (t)v = Q(t) , P (t) = (1 − n)p(t), Q(t) = (1 − n)q(t), (2.16)

which is a linear ODE for the variable v, and we can use integrating factors to
solve. Let µ(t) be the integrating factor for (2.16), then the general solution is

v(t) = 1

µ(t) [∫ Q(t)µ(t) dt + c] ⇒ y(t) = ( 1

µ(t) [∫ Q(t)µ(t) dt + c])
1

1−n

.

The take-away message is that sometimes we can transform a non-linear ODE
to a linear ODE, and using integrating factors to obtain the solution. Always try to
look for suitable transformations!

2.4.2 Homogeneous equations

Definition 2.3 (Homogeneous first order equation). A first order ODE dy
dt = f(t, y)

is called homogeneous if the function f only depends on the ratio y
t . That is, we

can express

f(t, y) = F (y/t) for some function F.

7



Example 2.4. Consider the ODE

dy

dt
= y − 4t

t − y = f(t, y).

Dividing numerator and denominator by t leads to

f(t, y) = y − 4t

t − y = y/t − 4

1 − y/t = F (y/t), where F (s) = s − 4

1 − s.

So how do we solve an ODE of the form dy
dt = F (y/t)? The answer is to use a

transformation. Define a new variable v = y/t⇔ y = vt. Then, the RHS of the ODE
becomes just F (v). For the LHS, by the product rule

y(t) = tv(t) ⇒ dy

dt
= tdv

dt
+ v

⇒ t
dv

dt
+ v(t) = F (v) .

Note that the initial condition y(t0) = y0 also transforms:

y(t0) = y0⇒ t0v(t0) = y0 ,

and it is important to see that if y0 ≠ 0 then we cannot choose t0 = 0, otherwise we
get a contradiction.

The transformed ODE in the variable v is now

dv

dt
= F (v) − v

t
⇒ 1

F (v) − v
dv

dt
= 1

t
,

which is a separable equation!

Example 2.5. Returning to the example where we solve the ODE dy
dt =

y−4t
t−y . Using

a transformation y = tv we find that v satisfies

1

F (v) − v
dv

dt
= 1

t
⇒ 1 − v

(v − 2)(v + 2)
dv

dt
= 1

t
.

Using partial fractions the coefficient can be simplified to

1 − v
(v − 2)(v + 2) = −1

4

1

v − 2
− 3

4

1

v + 2
.

Then, integrating gives the general solution

− 1

4
ln(v − 2) − 3

4
ln(v + 2) = ln t + c

⇒ − 1

4
ln(y(t)/t − 2) − 3

4
ln(y(t)/t + 2) = ln t + c.
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2.5 Exact equations

We recall that an ODE is separable if it can be expressed in the form

M(t) +N(y)dy
dt

= 0,

for some functions M and N such that their anti-derivative exist. What if M and
N depend on both t and y? That is, we encounter an ODE of the form

M(t, y) +N(t, y)dy
dt

= 0. (2.17)

Example 2.6. The ODE

2t + y2 + 2ty
dy

dt
= 0

is a non-linear, non-autonomous ODE with M(t, y) = 2t + y2 and N(t, y) = 2ty.

Idea: Suppose there is a function Ψ(t, y) such that

∂Ψ

∂y
(t, y) = N(t, y), ∂Ψ

∂t
(t, y) =M(t, y) , (2.18)

where ∂Ψ
∂t denotes the partial derivative of Ψ with respect to t. Then the ODE

(2.17) can be expressed as

M(t, y) +N(t, y)dy
dt

= 0⇒ ∂Ψ

∂t
(t, y) + ∂Ψ

∂y
(t, y)dy

dt
= d

dt
Ψ(t, y(t)) = 0.

This is similar to the ideas behind separable equations. Then, integrating gives the
general (implicit) solution

Ψ(t, y(t)) = c , c ∈ R, (2.19)

and if the initial condition is y(t0) = y0, then the particular (implicit) solution is

Ψ(t, y(t)) = Ψ(t0, y0) . (2.20)

Example 2.7. Back to the example (2t + y2) + (2ty)dy
dt = 0. If a function Ψ(t, y)

exists, then

∂Ψ

∂t
= 2t + y2,

∂Ψ

∂y
= 2ty.

One possible choice is

Ψa(t, y) = t2 + ty2 + a, a ∈ R.

Then, the general (implicit) solution to the ODE is Ψa(t, y) = c, c ∈ R. In fact we
could have chosen a = 0 and the general solution then becomes

t2 + ty(t)2 = c, c ∈ R.
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Definition 2.4 (Exact equation). A first order ODE M(t, y) +N(t, y)dy
dt = 0 is an

exact equation if there exists a function Ψ(t, y) such that

∂Ψ

∂t
(t, y) =M(t, y), ∂Ψ

∂y
(t, y) = N(t, y) . (2.21)

The general solution y(t) to the ODE is given implicitly as Ψ(t, y(t)) = c, c ∈ R.

Questions: 1) What are the ways to determine if an ODE of the form M(t, y)+
N(t, y)dy

dt = 0 is exact? 2) How do we find the function Ψ(t, y)?

To answer this, let us assume the following: For fixed constants α,β, γ, δ with
(α,β) ⊂ I, suppose M,N,My = ∂M

∂y and Nt = ∂N
∂t are continuous in the rectangle

R ∶= (α,β) × (γ, δ), and suppose Ψ is two-times differentiable function in R with
continuous derivatives. We state a theorem answering the above questions.

Theorem 2.1. Under the above assumptions, it holds that

M(t, y) +N(t, y)dy
dt

= 0 is exact ⇔My(t, y) = Nt(t, y) for each (t, y) ∈ R . (2.22)

As a consequence the function Ψ(t, y) defined as

Ψ(t, y) = ∫
t

t0
M(s, y) ds + ∫

y

y0
N(t, r) dr − ∫

y

y0

∂

∂r ∫
t

t0
M(s, r) ds dr , (2.23)

for constants t0 ∈ (α,β), y0 ∈ (γ, δ), satisfies Ψt(t, y) =M(t, y), Ψy(t, y) = N(t, y) if
and only if My(t, y) = Nt(t, y) for each (t, y) ∈ R.

The proof of the theorem has two parts. Let us first show (⇒) of (2.22). If
M(t, y) +N(t, y)dy

dt = 0 is exact, by the symmetry of second order derivatives, nec-
essarily it holds that

∂

∂t
N = ∂

∂t

∂Ψ

∂y
= ∂

∂y

∂Ψ

∂t
= ∂

∂y
M ⇒My = Nt.

For the reverse direction (⇐) of (2.22), suppose My = Nt holds and let us construct
the function Ψ. Since Ψt =M , integrating from t0 ∈ (α,β) to t > t0 gives

∂Ψ

∂t
=M ⇒ Ψ(t, y) = ∫

t

t0
M(s, y) ds + h(y) (2.24)

with some function h(y) acting as the constant of integration. What are the condi-
tions on h so that ∂Ψ

∂y = N?

Lets now differentiate the formula for Ψ with respect to y:

N(t, y) = ∂Ψ

∂y
(t, y) = ∂

∂y
Q(t, y) + h′(y), Q(t, y) ∶= ∫

t

t0
M(s, y) ds

⇒ h′(y) = N(t, y) − ∂

∂y
Q(t, y) . (2.25)
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We now claim that, under the condition My = Nt, the RHS of (2.25) does not depend
on t. Indeed, just differentiating the RHS with respect to t gives

∂

∂t
(N(t, y) − ∂

∂y ∫
t

t0
M(s, y) ds) = Nt(t, y) −

∂

∂y

∂

∂t ∫
t

t0
M(s, y) ds

= Nt(t, y) −
∂

∂y
M(t, y) = (Nt −My)(t, y) = 0.

In the above, we used the formula

∂

∂t ∫
t

t0
M(s, y) ds =M(t, y).

So, under the hypothesis My = Nt, it turns out that the RHS of (2.25) depends
only on y. So we have an equation of the form h′(y) = f(y) for some function f .
Integrating from y0 to y gives

h(y) = ∫
y

y0
(N(t, r) − ∂

∂r ∫
t

t0
M(s, r) ds) dr + b, b ∈ R.

Plugging this into (2.24) and as discussed before we can choose b = 0 then yields the
formula (2.23).

Check: Does the function Ψ(t, y) defined in (2.23) satisfies Ψt =M and Ψy = N?
- Exercise.

Example 2.8. Solve the ODE

(y cos(t) + 2tey) + (sin(t) + t2ey − 1)dy
dt

= 0.

Set

M(t, y) = y cos(t) + 2tey, N(t, y) = sin(t) + t2ey − 1,

and computing the partial derivatives gives

My = cos(t) + 2tey, Nt = cos(t) + 2tey ⇒ ODE is exact!.

By Theorem 2.1 there exists a function Ψ(t, y) such that

Ψt =M = y cos(t) + 2tey, Ψy = N = sin(t) + t2ey − 1.

Integrating Ψt with respect to t gives

Ψ(t, y) = ∫ M(t, y) dt + h(y) = y sin(t) + t2ey + h(y).

Differentiating with respect to y shows that

∂Ψ

∂y
= sin(t) + t2ey + h′(y) = N(t, y).

Comparing gives the relation

h′(y) = −1⇒ h(y) = −y⇒ Ψ(t, y) = y sin(t) + t2ey − y.
Therefore, the general (implicit) solution to the ODE is

y(t) sin(t) + t2ey(t) − y(t) = c, c ∈ R.
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Remark 2.3. What about separable equations M(t) +N(y)dy
dt = 0? The condition

My = Nt holds trivially since My = 0 = Nt. Then, from the formula (2.23), the
function Ψ(t, y) reads as

Ψ(t, y) = ∫
t

t0
M(s) ds + ∫

y

y0
N(r) dr − ∫

y

y0

∂

∂r ∫
t

t0
M(s) ds dr

= ∫
t

t0
M(s) ds + ∫

y

y0
N(r) dr

=m(t) + n(y) + constant ,

which agrees with (2.11). Note that since M depends only on s,

∂

∂r ∫
t

t0
M(s) ds = 0.

2.6 Exact equations with integrating factor

We begin with an example

Example 2.9. The non-linear ODE (3ty + y2)+ (t2 + ty)dy
dt = 0 is not exact! Since

for M(t, y) = 3ty + y2 and N(t, y) = t2 + ty, the partial derivatives are

My = 3t + 2y ≠ Nt = 2t + y.

If there was a function Ψ(t, y) such that Ψt = M and Ψy = N , then integrating
Ψt =M with respect to t leads to

Ψ(t, y) = ∫ 3ty + y2 dt + h(y) = 3

2
t2y + ty2 + h(y),

for some function h(y). Then, differentiating the above express with respect to y
leads to

Ψy =
3

2
t2 + y2 + h′(y)

and compare with N(t, y) = t2+ty there is no possibility to satisfy the relation Ψy = N .

So how to we solve a non-exact ODE?

Idea: Similar to the way we treated the first order linear ODEs, consider multi-
plying with a “integrating factor µ” and hope things are better. We obtain after
multiplying a new ODE

µM(t, y) + µN(t, y)dy
dt

= 0. (2.26)

If (2.26) is an exact equation, then by Theorem 2.1 necessarily the following relation
must be satisfied:

∂

∂t
(µN) = ∂

∂y
(µM) . (2.27)

Lets investigate two cases.
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Case 1. µ is just a function of t, i.e., µ = µ(t). Then (2.27) simplifies to

N(t, y)dµ
dt

+ µ(t)Nt(t, y) = µ(t)My(t, y). (2.28)

If N(t, y) ≠ 0 for (t, y) ∈ (α,β) × (γ, δ) = R, then we obtain an ODE for µ:

dµ

dt
= µ(t) (My −Nt

N
) (t, y) =∶ µ(t)K(t, y). (2.29)

Further suppose the factor K(t, y) depends only on t, then (2.29) is a first order
linear ODE in µ(t) which can be solved by the method of integrating factors.

Case 2. µ is just a function of y, i.e., µ = µ(y). Then (2.27) simplifies to

M(t, y)dµ
dy

+ µ(t)My(t, y) = µ(t)Nt(t, y). (2.30)

If M(t, y) ≠ 0 for (t, y) ∈ (α,β) × (γ, δ) = R, then we obtain an ODE for µ:

dµ

dy
= µ(y) (Nt −My

M
) (t, y) =∶ µ(t)H(t, y). (2.31)

Further suppose the factor H(t, y) depends only on y, then (2.29) is a first order
linear ODE in µ(y) (where the independent variable is now y), and again can be
solved by the method of integrating factors.

Take away message. If we encounter an ODE M(t, y)+N(t, y)dy
dt = 0 that is not

an exact equation, that is My ≠ Nt, then try computing

(1) K(t, y) = My−Nt

N (t, y); or

(2) H(t, y) = Nt−My

M (t, y).

If K is only a function of t then solving for the integrating factor µ(t) that satisfies

dµ

dt
= µ(t)K(t),

and multiplying with the non-exact ODE, the new ODE µ(t)M(t, y)+µ(t)N(t, y)dy
dt =

0 becomes an exact equation. Similarly, if H is only a function of y, then solving
for the integrating factor µ(y) that satisfies

dµ

dy
= µ(y)H(y),

and multiplying with the non-exact ODE, the new ODE µ(y)M(t, y)+µ(y)N(t, y)dy
dt =

0 becomes an exact equation.
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Check. If K(t, y) = My−Nt

N (t, y) is only a function of t, then for the new ODE

µ(t)M(t, y) + µ(t)N(t, y)dy
dt = 0 let us compute

∂

∂y
(µ(t)M(t, y)) = µ(t)My(t, y),

∂

∂t
(µ(t)N(t, y)) = N(t, y)dµ

dt
+ µ(t)Nt(t, y),

⇒ ∂

∂y
(µ(t)M(t, y)) − ∂

∂t
(µ(t)N(t, y)) = µ(t)(My −Nt)(t, y) −N(t, y)dµ

dt
= 0.

Example 2.10. Returning to the example ODE (3ty + y2) + (t2 + ty)dy
dt = 0, which

is not an exact equation. Computing

My = 3t + 2y, Nt = 2t + y, K = My −Nt

N
= t + y
t2 + ty = 1

t
, H = Nt −My

M
= −t − y

3ty + y2
.

We see that K is only a function of t but H is not just a function of y. So we expect
the integrating factor µ to be a function of t only, which solves the ODE

dµ

dt
= µ(t)

t
⇒ µ(t) = t exp(c), c ∈ R.

Multiplying this integrating factor with the ODE yields

t(3ty + y2) + t(t2 + ty)dy
dt

= 0,

which is now an exact equation with function Ψ(t, y) given as

Ψ(t, y) = t3y + 1

2
t2y2.

So the general (implicit) solution to the ODE is

t3y(t) + 1

2
t2y2(t) = c, c ∈ R.

So far for non-exact ODEs of the form M(t, y) +N(t, y)dy
dt = 0, the suggestion is

to check whether K(t, y) is only a function of t or H(t, y) is only a function of y. If
either one is true then we can apply the method of integrating factors to obtain an
exact equation. But what if neither is true?

The key requirement in the analysis of exact equations is the relation

∂

∂t
(µN) = ∂

∂y
(µM).

If µ = µ(t, y) is a function of t and y, computing using the product rule and chain
rule yields

M(t, y)µy −N(t, y)µt = µ(t, y) (Nt −My) (t, y) . (2.32)

14



The above is so-called a Partial Differential Equation (PDE) since it involves
the partial derivatives of µ with respect to t and y. In general the analysis for
PDEs is much more involved than ODEs, in particular a PDE may not have a
solution (non-existence) and even if a solution exists, there may be many (often
infinitely many) of them (non-uniqueness). So the general situation seems to
be impenetrable, but looking back at transformation methods and how we dealt
with homogeneous equations, we can use similar methods to treat the case if µ is a
function of z = ty. Using the chain rule

∂

∂t
µ(z) = µ′(z)∂z

∂t
= yµ′(ty),

∂

∂y
µ(z) = µ′(z)∂z

∂y
= tµ′(ty).

Then, in (2.32) we now have the relation

(tM(t, y) − yN(t, y))µ′(z) = µ(z)(Nt −My)(t, y)

⇒ µ′(z) = µ(z) ( Nt −My

tM − yN ) (t, y) =∶ µ(z)L(t, y).

If the factor L is a function only of z = ty, i.e., L = L(z) = L(ty), then we can deduce
an integrating factor µ as a function of z = ty. Repeating our procedure this would
then yield an exact equation.

Exercise: Show that if L is only a function of z, then the new ODE µ(ty)M(t, y)+
µ(ty)N(t, y)dy

dt = 0 is an exact equation.

2.7 Linear vs Nonlinear ODEs - a comparison

So far let us summarise the methods we have learnt:

Type Method Explicit/Implicit solution

y′ = p(t)y + q(t) Integrating factor y(t) = µ(t)−1(∫ µ(t)q(t) dt + c)

M(t) +N(y)y′ = 0 Separable equation m(t) + n(y(t)) = c

y′ + p(t)y = q(t)yn v ∶= y1−n y(t) = (µ−1(∫ Q(t)µ(t) dt + c)1/(1−n)

y′ = F (y/t) v = y/t 1/(F (v) − v)dv
dt = 1

t

M(t, y) +N(t, y)y′ = 0 Exact equation Ψ(t, y(t)) = c

While ODEs which are first order and linear have been completely solved, for
non-linear ODE there are a variety of methods, but still a general theory is missing.
The mathematical theory we want to develop consists of the following: What are the
conditions for a general first order (possibly non-linear) ODE dy

dt = f(t, y) to have
a solution. If there is a solution is it the only one? Together these two questions
form the issue of existence and uniqueness of solutions to first order ODEs. Let
us first discuss why these are important properties to study.
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Existence of solutions. An ODE is often derived as a model of some physical
phenomenon. We can observe, independently of how we model, that some quantity
changes in time. It is important to stress that models are only an approximation
of the true phenomenon that is occurring, since in the real-world there are many
processes either too complex to model or that are still unknown to modellers. There-
fore to obtain a tractable description, certain simplifying assumptions have to be
made (recall the ODE for population dynamics). Nevertheless, once a model has
been proposed, one should first check if a solution to the model exists. If no solution
exists then the model is not consistent with reality and modifications should be
made.

Uniqueness of solutions. If the model (or ODE) has at least one solution, the
next question is is it the only solution. A related concept is predictability
of the model. If there is only one possible solution to the model, then you have
completely determined the behaviour of the solution. If more than one solution
to the model exists, then one has to ask if your solution is the one that is observed
in reality. In effect the predictive power of the model is decreased, as you cannot be
sure if the solution you are using is really the one used by nature.

2.7.1 Existence and Uniqueness of solutions

Let us first state the mathematical result for linear ODEs.

Theorem 2.2 (Existence and Uniqueness for first order linear ODEs). Let I be an
open interval of R with (α,β) ⊂ I. Suppose functions p and q are continuous on
(α,β). Then, for any t0 ∈ (α,β), y0 ∈ R, there exists a unique function y(t) that
satisfies the linear differential equation

dy

dt
= p(t)y + q(t)

for each t ∈ (α,β) with y(t0) = y0.

In particular, the existence and uniqueness of solutions is guaranteed by check-
ing that the functions p and q are continuous in the interval of definition I. If the
interval I contains points t∗ where p or q are discontinuous, then there may be no
solution to the ODE or there may not be a unique solution.

Proof. Repeating the ideas from the method of integrating factors, we first look at
the function

µ(t) = exp(−∫ p(t) dt) . (2.33)

Since p is continuous in (α,β) one can show that µ(t) is also continuous and non-
zero (due to the exponential) for t ∈ (α,β). Therefore the reciprocal 1/µ(t) makes
sense and the integral ∫ µ(t)q(t) dt is well-defined and differentiable. In particular
the formula for the general solution

y(t) = 1

µ(t) [∫ µ(t)q(t) dt + c] (2.34)
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is well-defined for t ∈ (α,β). This shows existence. For uniqueness we have to
uniquely determine the constant of integration c. Since the equation (2.33) defines
the integrating factor µ(t) up to a multiplicative factor that depends on the lower
limit of the integration, in choosing this lower limit to be t0, that is

µ(t) ∶= exp(∫
t

t0
−p(s) ds) ⇒ µ(t0) = 1.

Then, modifying (2.34) to

y(t) = 1

µ(t) [∫
t

t0
µ(s)q(s) ds + c] ,

to satisfy the initial condition y(t0) = y0 we must have c = y0. Therefore the unique
solution to the IVP is

y(t) = 1

µ(t) [∫
t

t0
µ(s)q(s) ds + y0] .

Interval of definition. Theorem 2.2 asserts that the unique solution to the linear
ODE with initial condition y(t0) = y0 exists throughout any interval about t = t0 in
which the functions p and q are continuous. At points of discontinuity (for p or q)
we may expect the solution to tend to ±∞ and then ceases to exist.

What about for non-linear ODEs? It turns out that the criterion is rather similar:

Theorem 2.3 (Existence and Uniqueness for first order non-linear ODEs). Let
α,β, γ, δ be fixed constants, and define the rectangle R = (α,β) × (γ, δ). Given
constants t0, y0 such that t0 ∈ (α,β) and y0 ∈ (γ, δ) and suppose the function f and
its partial derivative ∂f

∂y are continuous in R. Then, there exists a constant h > 0

such that for any t ∈ (t0 − h, t0 + h) and t ∈ (α,β), there exists a unique solution
y(t) to the differential equation

dy

dt
= f(t, y)

for each t ∈ (t0 − h, t0 + h) ∩ (α,β) with y(t0) = y0.

Observations:

• If f(t, y) = p(t)y + q(t), then ∂f
∂y = p(t) and the assumptions are the same as

those in Theorem 2.2, namely p and q are continuous.

• We have existence and uniqueness for a possibly smaller interval (t0−h, t0+h)
than the linear case.

• It turns out that if we only assume f is continuous, then we still have existence
of solutions, but in general uniqueness is not guaranteed.

We defer the proof to later sections, and look at some examples first.
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2.7.2 Examples

Example 2.11. For the IVP

ty′ + 2y = 4t2, y(1) = 2,

find an interval for which a unique solution exists.

In the standard form for linear ODEs, we find that

dy

dt
= −2

t
y + 4t2⇒ p(t) = −2

t
, q(t) = 4t2.

From this, q(t) is continuous for all t ∈ R, but p(t) is continuous only in R ∖ {0}.
Since the interval (0,∞) contains t0 = 1, a unique solution to the IVP exists only
for t ∈ (0,∞).

Consequently, if we change the initial condition to y(−1) = 2, then Theorem 2.2
asserts the existence of a unique solution to the IVP for t ∈ (−∞,0).

Example 2.12 (Size of the rectangle R). For non-linear ODEs, Theorem 2.3 re-
quires that f and ∂f

∂y to be continuous in a rectangle R which contains the point

(t0, y0). Consider the ODE

dy

dt
= 3t2 + 4t + 2

2(y − 1) .

Then observe that

f(t, y) = 3t2 + 4t + 2

2(y − 1) ,
∂f

∂y
(t, y) = −3t2 + 4t + 2

(y − 1)2

are continuous everywhere expect on the line y = 1. If our initial poinit (t0, y0) does
not intersect the line y = 1, then we can always draw a rectangle R around the point
(t0, y0) for which f and ∂f

∂y are continuous in R. Then Theorem 2.3 says that there

is a unique solution to the ODE in some interval about t = t0 with y(t0) = y0.

One may now be tempted to think that the rectangle R can be extended infinitely
in both the positive and negative t directions, which means the solution y(t) may be
defined for all t ∈ R. It turns out that by solving the ODE (it is a separable equation)
we have the general (implicit) solution

y2(t) − 2y(t) = t3 + 2t2 + 2t + c.

As this is a quadratic in y, a simple calculation shows that

y(t) = 1 ±
√
t3 + 2t2 + 2t + 1 + c,

and this means that the solution is valid as long as the function f(t) = t3+2t2+2t+1+c
is non-negative. For example, if c = 3 then g(t) = t3 + 2t2 + 2t + 4 = (t + 2)(t2 + 2)
has a zero at t = −2. When t < −2, g(t) is negative and so the square root

√
g(t) is

not defined. Therefore one has to be careful about the interval of definition before
claiming that the solution y(t) exists in a much larger interval about t = t0 simply
because the rectangle R can be extended in such a way that the functions f and ∂f

∂y

remain continuous.

18



Example 2.13 (Non-uniqueness). We now give an example where the solution to
an ODE may be non-unique if the assumptions of Theorem 2.3 are not satisfied.
Consider the IVP

dy

dt
= y1/3, y(0) = 0

for t ≥ 0. The function f(y) = y1/3 is continuous everywhere in [0,∞), but the
partial derivative ∂f

∂y = 1
3y

−2/3 does not exist at y = 0, and so it is not continuous at
y = 0. While Theorem 2.3 does not apply, a similar result can be used to show that
there exists at least one solution y(t) to the IVP.

Since the ODE is separable, we obtain as a particular solution

y(t) = [2

3
t]

3/2
for t ≥ 0.

But note that the function y1(t) ≡ 0 is also another solution, so is the function

y2(t) = − [2
3t]

3/2
, and for arbitrary positive t0 the family of functions

yt0(t) =
⎧⎪⎪⎨⎪⎪⎩

0 if 0 ≤ t ≤ t0,
±[2

3(t − t0)]
3/2

if t ≥ t0,

also solves the IVP. In particular we have found an infinite family of solutions to
the IVP.

It is important to note that this does not contradict Theorem 2.3, since the

condition “∂f
∂y is continuous in R” is not satisfied and so the theorem is not applicable

to this IVP. Nevertheless, if we consider another initial condition (t0, y0) such that
y0 ≠ 0, then Theorem 2.3 guarantees there is a unique solution to the IVP with
y(t0) = y0.

Example 2.14 (Application of uniqueness). Consider the IVP

dy

dt
= sin(exp(exp(t))y), y(0) = 0.

This is a (highly) non-linear, non-separable equation. But observe that y(t) ≡ 0 is
a solution. Can we say this is the only solution? If so, then we have completely
solved the IVP. Let us check if the assumptions of Theorem 2.3 are fulfilled. Setting
f(t, y) = sin(exp(exp(t))y) with ∂f

∂y = cos(exp(exp(t))y) exp(exp(t)), we see that
both are continuous on R2. Therefore Theorem 2.3 says that there exists a unique
solution to the IVP for t ∈ (−h,h) for some constant h > 0. In particular, if y1 is
any other solution to the IVP for t ∈ (−h,h), it must be equal to the solution y2 ≡ 0.
Thus, the only solution to the IVP is y(t) ≡ 0 for all t ∈ (−h,h).

Example 2.15 (Blow up). Consider the ODE dy
dt = y2. One solution is the function

y(t) ≡ 0. For non-zero solutions to the ODE, using the fact that the ODE is a
separable equation we obtain

y(t) = − 1

t + c, c ∈ R.
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For the initial condition y(0) = 1, we compute c = −1 and so

y(t) = 1

1 − t .

Note that y(t) → ∞ as t → 1 (a behaviour which we call blow up as the solution
becomes unbounded. Thus the interval of definition for the solution is I = [0,1).
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