Solutions guideline to HW2 for MATH3270A

October 20, 2017

Any questions about the solutions, please email Ms. Rong ZHANG at
rzhang@math. cuhk. edu. hk

Question 1

(a)

If the new ODE
u(f()g(y))M(t,y) +u(f(t)g(y))N(t,y)y =0

is to be an exact equation, then we must have

(L(f () gW)M(t,y))y = (u(f()gy)N(E y))e.
Computing this gives

fOd () ()M (2, y)+u( )My = g(y) f' () ()N (¢, y) + p(z) N,
= W(2) (f(t)g' (y)M(t,y) — g(y) ( IN(t,y)) = pu(z) (Ni(t,y) — My(t,y))
also allow Nt t y y(t,9)
o allow 4 (f AT

Define

M(t,y) = siny Se-tsint, N(t.y) = cosy + zet cost'
Computing the derivatives gives

M, = 8y _ siny Ny = —ée_t cost — §e_t sint.

y y* y y
Then, since f(t) = €', g(y) = y, we have

F@)g ()Mt y) — g(y)f QN y)
= e'(siny)/y — 3sint — e’ cosy — 3cost.

Hence,
Ny — M, 1 3e*(cost +sint) + cosy — (siny)/y
FO)g )M —g(y) ()N ye'((siny)/y — cosy) — 3sint — 3cost
_ 11 (siny)/y — cosy — 3e~*(cost + sint)
"~ yet ((siny)/y — cosy) — 3e~(sint + cost)
1
_ -1_ 1
= (ye') ' =
Therefore
2
2 (2) = =)




Question 2

(a) Multiplying the differential inequality by a non-negative function u gives

pu(t)z" = p(t)u(t)z < 0.
Following the ideas of integrating factors, suppose p is such that

H(1)2! — plt)n(t)z = 2 ((1)=(0).

This means that u(t) = e~ /PO = ¢=P®) Therefore, we see that

d, _
S(ETOx0) < 0,

ie., F(t,2(t)) = e P®z(t). Upon integrating both sides of the inequality yields
e PO2(s) <e P 2(ty) = 2(s) < 2(tg)el =P,
(b) The difference z = y; — yo satisfies the IVP
2= f(ty) = f(tye),  2(to) = Yo —yo = 0.
Multiplying the above by z gives
57 1210 = 2(f(tyr) = f(t,2)).

Then, using the assumption of f, we see that

|2(f(t,y1) = f(ty)) < [2[ Ly — | = L ’Z‘Q 3
and so

%\zﬁ <2L|z)?.
Setting p(t) = 2L so that P(t) = 2Lt, then from part (a) we obtain
[2(s)* < |2 (to)[* X710, (1)
Since z(to) = y1(to) — y2(to) = yo — yo = 0, we have
12(s)? < 0= 2(s) =0 Vs >t

The implication is that y;(t) = y2(t) for all ¢ > ¢y, and we have uniqueness of solutions
to the ODE.

Question 3
(a) Let ay and ap be constants such that

ar f(t) + aeg(t) =0 VteR.



(b)

Then differentiating the above with respect to t gives
arf'(t) + axg'(t) =0 VteR.
The two equations can be expressed together as
(f(t) 9(t) ><a1>:(0>.
f'@) g'(t) ay 0

Since the Wronskian is non-zero, the matrix is invertible, and thus oy = as = 0. Hence,
f and g are linearly independent.

Also allow the following argument: If f and ¢ are linearly dependent, then there are
constants a, b # 0 such that

af(t)+bg(t) =0 VteR.
Hence f(t) = —2g(t) with f'(t) = —2¢/(t) and so

JOF(0) ~ D9l = g0 (1) + o (Hg() =0 V€ R

On the other hand the Wronskian W(f, g)[t] is non-zero for some t € I, but
W(f,9)lt] = g'() f(t) — g(t) f'(t) = O
which yields a contradiction.

(i) For t >0, f(t) = t3 and so f'(t) = 3t%. For t < 0, f(t) = —t> and so f'(t) = —3t°.
For t = 0, consider the definition of the derivative and take

f(h) = f(0) f(h) = f(0)

lim = lim A* =0, lim = lim —h*=0.
h—0+ h h—0t h—0~ h h—0~
Hence f’(0) = 0 and the derivative of f is
3t2 if t >0,
') =<0 if t =0,
=3t ift<0.

(i) The Wronskian of f(t) = t*|t| and g(t) = t* for t > 0 is
W, 9] = g/ ()£ () — F(D)g(t) = 362 x £ — 32 x £ = 0.
For ¢ < 0 the Wronskian is
W(f,g)t] = =3t x t* — (=3t*) x t* = 0.
For ¢t = 0 the Wronskian is



(iii) Let oy and ay be such that
at? |t| +agt? =0 VteR.
For t > 0 the above becoms
(o1 + az)t® =0,
but since t > 0 we must have a; + ay = 0. Similarly for ¢ < 0 we deduce
(—a1 + ao)t® =0,

and so as — ay = 0. This implies that a; = as = 0.
Also allow for example:

t:1:>011t2|t|+a2t3:a1+a220,
t:—1:>Oé1t2‘t|+062t32041—06220.

Hence, it must hold that a; = ay = 0.

(c) If y2 is a function satisfying W (y1, y2)[t] # 0, and y; is a solution. Then, differentiating
the ODE w13/, — 9,52 = ce~ /P4 gives

Vi iy — Yy — Yhyh = yayh — Yy = —p(t)ce PO,
Adding and subtracting zero in a clever way and using that y; is a solution to the ODE:

yi (s + p()h + a()y2) — p() by — q(t)yeun
+ p(t)yllyQ + q(t)ylyQ = —p<t)ce_ fp(t) dt

Simplifying gives
y1(ys + p(t)yy + q(t)y2) = p(t) (—ce‘f POy — yiw) =0
due to Abel’s theorem. Hence

y1(yy +p(t)ys + q(t)y2) =0, (1)

and since y; is a non-zero function, this means yo must satisfy the ODE y”+p(t)y'+q(t)y =
0.

Also allow for obtaining the answer by differentiating the Wronskian and using Abel’s
theorem:

d /! /! —
EW(QL y2)[t] = vyyr — ylye = —ep(t)e™ PO = —p(t)W (y1, 1) [1].

Then, using that y; is a solution to the ODE
Yot — Y1Y2 = Yay1 + y2(p()yy + a(t)yr) = —p(OW (y1, y2)[t] = —p(t) (Way1 — v192),
and so

y1(ys + p(t)ys + q(t)y2) = 0.

Since y; is non-zero, y, must satisfy the ODE.



Question 4

(a) Multiplying the ODE for u with « and the ODE for v with v gives

d1 d1
fop — — — 2: ! = —— 2
uu u vu, vv dt2v

== — —p(t)? — q(t)uv.

Upon adding gives

%(UQ +02) = —2p(t)o? +2(1 — q(t) Juv.

Also allow students to compute

d
E(u2 +v?) = 2uu’ + 200" = 2uv — 2p(t)v* — 2q(t)uv.

(b) By Young’s inequality
21(1 = q(t)uv] < 2|uv (1 + |g(t)]) < (1+ Q) (u® +v7),
|=2p(t)v®] < 2|p(t)|v* < 2Pv*.

(c) One obtains the differential inequality

%z(t) <(A+Q+2P)z, z(t)=u®+ 0%

From answers to Q2, one finds

2(t) < eUTRERL(0) = (WP(t) + 0°(1)) < (uf + vg)e O,

If there is a t, such that |u(t)| — oo as t — t,, then from the above inequality this implies
that

(u2 + v2)eMH Q2P > 42(4) 5 o0 as t — t,.
However,

t]inta(ug + U§)€(1+Q+2P)t = (u? + U§)6(1+Q+2P)t* < 00
—t

as t, < oo, therefore we have a contradiction. Hence, no such ¢, can exist.

If y is a solution to the second order linear ODE " + p(t)y’ + q(t)y = 0, set u(t) = y(t)
and v(t) = ¢/(t), then

u'=v, v'=y"=—pt)y —qlt)y = —p(t)o —q(t)u.
Hence we deduce from (b) and (c) that
)+ (y)7() < (yg +yp)el e,

Therefore the conclusion is that any solution y to IVP with bounded coefficients cannot
blow up in finite time.



Question 5

(a) The characteristic equation for the ODE 6" + w?0 = 0 is
r?4+w?=0=r=+iw.
Hence, the general solution is given as
0(t) = Acos(wt) + Bsin(wt)

for constants A, B. If we write

e(z):m(

cos(wt)

A B X
NrEET EVZEEE Sm(“’“)

and consider ¢ such that

A
VT B

|

sin(¢) = __5 = tan(¢) =

cos(¢) = N

Y

we see that
0(t) = VA2 + B2(cos(wt) cos(¢) + sin(wt) sin(¢)) = v A% + B?(cos(wt — ¢)).
(b) The characteristic equation is
r? 4+ M+ w? = 0.

(i) In this case A? > 4w?, we have two real roots and so

A VN dw? A VAT duw?
G(t) = Ae”t + Be”t, = —5 + Tw, Ty = —5 — Tw

Since A > 0 and A\? > 4w?, we have r1, 7, < 0 and so the solution 6(¢) decays to zero
as t — oo.

(ii) In this case we have a repeated root and so
O(t) = (A+ Bt)e .

Since A > 0, the solution 0(t) decays to zero as t — oo.
(iii) In this case we have a complex conjugate pair of roots and so
VAaw? — \?
2

Similarly, as A > 0, we will see oscillations but with smaller and smaller amplitude
as t — oo and so 0(t) decays to zero as t — o0.

0(t) = e_%t(A cos(ut) + Bsin(ut)), u=

(¢) (i) Writing the ODE into standard form we have

k h k h
" / _ L N
a:—i—Mx—l—Mx—O, )\.—M, w .

Computing for the critical value A, = 2w = 10. Hence

A
N 0.0125 ~ 1%.



(i)

(i)

The new ODE reads as

x,,+k:—3OONx,+ hx—O
M MT

The critical value for damping is \. = 24/h/M. If the bridge is no longer damped

for Ny pedestrians, then
k — 300N, [ h
A= —— < A =20/ —.
M M

Rearranging gives

k 2vVhM
Ny > — — .
300 300

[2 marks for correct answer and working]

With the values of M, N, h and k, we see that
2’ —0.0252" + 25z = 0.

The roots of the characteristic equation is

/100 — (0.025)2
r=0.0125+i 5

~ 0.0125 + (4.9999)i.

Then, the solution to the ODE is
z(t) = Me® 2% cos((4.9999)t — ¢),

for some constants M and ¢. Since 4.9999/27 ~ 0.79577 =~ 0.8, it holds that the
solution has oscillations with amplitude growing like /%0 and frequency approxi-
mately 0.8 hertz.

Multiple the ODE by u' leads to

md

m kd d
2 dt

(u')? + §dt(u>2 = E(K(t) +P(t)) =0= K(t)+ P(t) = K(0) + P(0) Vt>0.

Also allow if students differentiated

d
E(K(t) + P(t)) = mu"u' + kuu' = (mu" + ku)u’ = 0,

and then integrating gives the statement.

Multiplying the ODE with «' gives

d

N2 __ d _ N2
a(K(t)jLP(t)H-)\(u) =0= %(K(t)%—P(t)) =—-\u')" <0.

Consequently, if u is not constant in time, the total energy is not conserved and
decreases to zero as time goes to infinity.



