
Solutions guideline to HW2 for MATH3270A

October 20, 2017

Any questions about the solutions, please email Ms. Rong ZHANG at
rzhang@math.cuhk.edu.hk

Question 1

(a) If the new ODE

µ(f(t)g(y))M(t, y) + µ(f(t)g(y))N(t, y)y′ = 0

is to be an exact equation, then we must have

(µ(f(t)g(y))M(t, y))y = (µ(f(t)g(y))N(t, y))t.

Computing this gives

f(t)g′(y)µ′(z)M(t, y) + µ(z)My = g(y)f ′(t)µ′(z)N(t, y) + µ(z)Nt

⇒ µ′(z) (f(t)g′(y)M(t, y)− g(y)f ′(t)N(t, y)) = µ(z) (Nt(t, y)−My(t, y))

also allow µ′(z) = µ(z)

(
Nt(t, y)−My(t, y)

f(t)g′(y)M(t, y)− g(y)f ′(t)N(t, y)

)
(b) Define

M(t, y) =
sin y

y
− 3e−t sin t, N(t, y) =

cos y + 3e−t cos t

y
.

Computing the derivatives gives

My =
cos y

y
− sin y

y2
, Nt = −3

y
e−t cos t− 3

y
e−t sin t.

Then, since f(t) = et, g(y) = y, we have

f(t)g′(y)M(t, y)− g(y)f ′(t)N(t, y)

= et(sin y)/y − 3 sin t− et cos y − 3 cos t.

Hence,

Nt −My

f(t)g′(y)M − g(y)f ′(t)N
= −1

y

3e−t(cos t+ sin t) + cos y − (sin y)/y

et((sin y)/y − cos y)− 3 sin t− 3 cos t

=
1

y

1

et
(sin y)/y − cos y − 3e−t(cos t+ sin t)

((sin y)/y − cos y)− 3e−t(sin t+ cos t)

= (yet)−1 =
1

z
.

Therefore

µ′(z) =
µ(z)

z
.
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Question 2

(a) Multiplying the differential inequality by a non-negative function µ gives

µ(t)z′ − p(t)µ(t)z ≤ 0.

Following the ideas of integrating factors, suppose µ is such that

µ(t)z′ − p(t)µ(t)z =
d

dt
(µ(t)z(t)).

This means that µ(t) = e−
∫
p(t) dt = e−P (t). Therefore, we see that

d

dt
(e−P (t)z(t)) ≤ 0,

i.e., F (t, z(t)) = e−P (t)z(t). Upon integrating both sides of the inequality yields

e−P (s)z(s) ≤ e−P (t0)z(t0)⇒ z(s) ≤ z(t0)e
P (s)−P (t0).

(b) The difference z = y1 − y2 satisfies the IVP

z′ = f(t, y1)− f(t, y2), z(t0) = y0 − y0 = 0.

Multiplying the above by z gives

1

2

d

dt
|z|2 = z(f(ty1)− f(t, y2)).

Then, using the assumption of f , we see that

|z(f(t, y1)− f(t, y2))| ≤ |z|L |y1 − y2| = L |z|2 ,

and so

d

dt
|z|2 ≤ 2L |z|2 .

Setting p(t) = 2L so that P (t) = 2Lt, then from part (a) we obtain

|z(s)|2 ≤ |z(t0)|2 e2L(s−t0). (1)

Since z(t0) = y1(t0)− y2(t0) = y0 − y0 = 0, we have

|z(s)|2 ≤ 0⇒ z(s) = 0 ∀s ≥ t0.

The implication is that y1(t) = y2(t) for all t ≥ t0, and we have uniqueness of solutions
to the ODE.

Question 3

(a) Let α1 and α2 be constants such that

α1f(t) + α2g(t) = 0 ∀t ∈ R.
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Then differentiating the above with respect to t gives

α1f
′(t) + α2g

′(t) = 0 ∀t ∈ R.

The two equations can be expressed together as(
f(t) g(t)
f ′(t) g′(t)

)(
α1

α2

)
=

(
0
0

)
.

Since the Wronskian is non-zero, the matrix is invertible, and thus α1 = α2 = 0. Hence,
f and g are linearly independent.

Also allow the following argument: If f and g are linearly dependent, then there are
constants a, b 6= 0 such that

af(t) + bg(t) = 0 ∀t ∈ R.

Hence f(t) = − b
a
g(t) with f ′(t) = − b

a
g′(t) and so

g′(t)f(t)− f ′(t)g(t) = − b
a
g(t)g′(t) +

b

a
g′(t)g(t) = 0 ∀t ∈ R.

On the other hand the Wronskian W (f, g)[t] is non-zero for some t ∈ I, but

W (f, g)[t] = g′(t)f(t)− g(t)f ′(t) = 0

which yields a contradiction.

(b) (i) For t > 0, f(t) = t3 and so f ′(t) = 3t2. For t < 0, f(t) = −t3 and so f ′(t) = −3t2.
For t = 0, consider the definition of the derivative and take

lim
h→0+

f(h)− f(0)

h
= lim

h→0+
h2 = 0, lim

h→0−

f(h)− f(0)

h
= lim

h→0−
−h2 = 0.

Hence f ′(0) = 0 and the derivative of f is

f ′(t) =


3t2 if t > 0,

0 if t = 0,

−3t2 if t < 0.

(ii) The Wronskian of f(t) = t2 |t| and g(t) = t3 for t > 0 is

W (f, g)[t] = g′(t)f(t)− f ′(t)g(t) = 3t2 × t3 − 3t2 × t3 = 0.

For t < 0 the Wronskian is

W (f, g)[t] = −3t2 × t3 − (−3t2)× t3 = 0.

For t = 0 the Wronskian is

W (f, g)[0] = 0.
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(iii) Let α1 and α2 be such that

α1t
2 |t|+ α2t

3 = 0 ∀t ∈ R.

For t > 0 the above becoms

(α1 + α2)t
3 = 0,

but since t > 0 we must have α1 + α2 = 0. Similarly for t < 0 we deduce

(−α1 + α2)t
3 = 0,

and so α2 − α1 = 0. This implies that α1 = α2 = 0.

Also allow for example:

t = 1⇒ α1t
2 |t|+ α2t

3 = α1 + α2 = 0,

t = −1⇒ α1t
2 |t|+ α2t

3 = α1 − α2 = 0.

Hence, it must hold that α1 = α2 = 0.

(c) If y2 is a function satisfying W (y1, y2)[t] 6= 0, and y1 is a solution. Then, differentiating
the ODE y1y

′
2 − y′1y2 = ce−

∫
p dt gives

y′1y
′
2 + y1y

′′
2 − y′′1y2 − y′1y′2 = y1y

′′
2 − y′′1y2 = −p(t)ce−

∫
p(t) dt.

Adding and subtracting zero in a clever way and using that y1 is a solution to the ODE:

y1(y
′′
2 + p(t)y′2 + q(t)y2)− p(t)y′2y1 − q(t)y2y1

+ p(t)y′1y2 + q(t)y1y2 = −p(t)ce−
∫
p(t) dt

Simplifying gives

y1(y
′′
2 + p(t)y′2 + q(t)y2) = p(t)

(
−ce−

∫
p(t) dt + y′2y1 − y′1y2

)
= 0

due to Abel’s theorem. Hence

y1(y
′′
2 + p(t)y′2 + q(t)y2) = 0, (1)

and since y1 is a non-zero function, this means y2 must satisfy the ODE y′′+p(t)y′+q(t)y =
0.

Also allow for obtaining the answer by differentiating the Wronskian and using Abel’s
theorem:

d

dt
W (y1, y2)[t] = y′′2y1 − y′′1y2 = −cp(t)e−

∫
p(t) dt = −p(t)W (y1, y2)[t].

Then, using that y1 is a solution to the ODE

y′′2y1 − y′′1y2 = y′′2y1 + y2(p(t)y
′
1 + q(t)y1) = −p(t)W (y1, y2)[t] = −p(t)(y′2y1 − y′1y2),

and so

y1(y
′′
2 + p(t)y′2 + q(t)y2) = 0.

Since y1 is non-zero, y2 must satisfy the ODE.
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Question 4

(a) Multiplying the ODE for u with u and the ODE for v with v gives

u′u =
d

dt

1

2
u2 = vu, v′v =

d

dt

1

2
v2 = −p(t)v2 − q(t)uv.

Upon adding gives

d

dt
(u2 + v2) = −2p(t)v2 + 2(1− q(t))uv.

Also allow students to compute

d

dt
(u2 + v2) = 2uu′ + 2vv′ = 2uv − 2p(t)v2 − 2q(t)uv.

(b) By Young’s inequality

2 |(1− q(t))uv| ≤ 2 |uv| (1 + |q(t)|) ≤ (1 +Q)(u2 + v2),∣∣−2p(t)v2
∣∣ ≤ 2 |p(t)| v2 ≤ 2Pv2.

(c) One obtains the differential inequality

d

dt
z(t) ≤ (1 +Q+ 2P )z, z(t) = u2 + v2.

From answers to Q2, one finds

z(t) ≤ e(1+Q+2P )tz(0)⇒ (u2(t) + v2(t)) ≤ (u20 + v20)e(1+Q+2P )t.

If there is a t∗ such that |u(t)| → ∞ as t→ t∗, then from the above inequality this implies
that

(u20 + v20)e(1+Q+2P )t ≥ u2(t)→∞ as t→ t∗.

However,

lim
t→t∗

(u20 + v20)e(1+Q+2P )t = (u20 + v20)e(1+Q+2P )t∗ <∞

as t∗ <∞, therefore we have a contradiction. Hence, no such t∗ can exist.

If y is a solution to the second order linear ODE y′′ + p(t)y′ + q(t)y = 0, set u(t) = y(t)
and v(t) = y′(t), then

u′ = v, v′ = y′′ = −p(t)y′ − q(t)y = −p(t)v − q(t)u.

Hence we deduce from (b) and (c) that

y2(t) + (y′)2(t) ≤ (y20 + y21)e(1+Q+2P )t.

Therefore the conclusion is that any solution y to IVP with bounded coefficients cannot
blow up in finite time.
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Question 5

(a) The characteristic equation for the ODE θ′′ + w2θ = 0 is

r2 + w2 = 0⇒ r = ±iw.

Hence, the general solution is given as

θ(t) = A cos(wt) +B sin(wt)

for constants A,B. If we write

θ(t) =
√
A2 +B2

(
A√

A2 +B2
cos(wt) +

B√
A2 +B2

sin(wt)

)
and consider φ such that

cos(φ) =
A√

A2 +B2
, sin(φ) =

B√
A2 +B2

⇒ tan(φ) =
B

A
,

we see that

θ(t) =
√
A2 +B2(cos(wt) cos(φ) + sin(wt) sin(φ)) =

√
A2 +B2(cos(wt− φ)).

(b) The characteristic equation is

r2 + λr + w2 = 0.

(i) In this case λ2 > 4w2, we have two real roots and so

θ(t) = Aer1t +Ber2t, r1 = −λ
2

+

√
λ2 − 4w2

2
, r2 = −λ

2
−
√
λ2 − 4w2

2
.

Since λ > 0 and λ2 > 4w2, we have r1, r2 < 0 and so the solution θ(t) decays to zero
as t→∞.

(ii) In this case we have a repeated root and so

θ(t) = (A+Bt)e
−λ
2

t.

Since λ > 0, the solution θ(t) decays to zero as t→∞.

(iii) In this case we have a complex conjugate pair of roots and so

θ(t) = e−
λ
2
t(A cos(µt) +B sin(µt)), µ =

√
4w2 − λ2

2

Similarly, as λ > 0, we will see oscillations but with smaller and smaller amplitude
as t→∞ and so θ(t) decays to zero as t→∞.

(c) (i) Writing the ODE into standard form we have

x′′ +
k

M
x′ +

h

M
x = 0, λ :=

k

M
, w :=

√
h

M
.

Computing for the critical value λc = 2w = 10. Hence

λ

λc
= 0.0125 ≈ 1%.
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(ii) The new ODE reads as

x′′ +
k − 300N

M
x′ +

h

M
x = 0.

The critical value for damping is λc = 2
√
h/M . If the bridge is no longer damped

for N0 pedestrians, then

λ =
k − 300N0

M
< λc = 2

√
h

M
.

Rearranging gives

N0 >
k

300
− 2
√
hM

300
.

[2 marks for correct answer and working]

(iii) With the values of M , N , h and k, we see that

x′′ − 0.025x′ + 25x = 0.

The roots of the characteristic equation is

r = 0.0125± i
√

100− (0.025)2

2
≈ 0.0125± (4.9999)i.

Then, the solution to the ODE is

x(t) = Me0.0125t cos((4.9999)t− φ),

for some constants M and φ. Since 4.9999/2π ≈ 0.79577 ≈ 0.8, it holds that the
solution has oscillations with amplitude growing like et/80 and frequency approxi-
mately 0.8 hertz.

(d) (i) Multiple the ODE by u′ leads to

m

2

d

dt
(u′)2 +

k

2

d

dt
(u)2 =

d

dt
(K(t) + P (t)) = 0⇒ K(t) + P (t) = K(0) + P (0) ∀t ≥ 0.

Also allow if students differentiated

d

dt
(K(t) + P (t)) = mu′′u′ + kuu′ = (mu′′ + ku)u′ = 0,

and then integrating gives the statement.

(ii) Multiplying the ODE with u′ gives

d

dt
(K(t) + P (t)) + λ(u′)2 = 0⇒ d

dt
(K(t) + P (t)) = −λ(u′)2 ≤ 0.

Consequently, if u is not constant in time, the total energy is not conserved and
decreases to zero as time goes to infinity.

7


