
Solutions guideline to HW1 for MATH3270A

September 22, 2017

Any questions about the solutions, please email Ms. Rong ZHANG at
rzhang@math.cuhk.edu.hk

Question 1

1 mark each if the order, linearity and autonomy are all correct. Otherwise zero marks.

Solution:

(a) 2nd order; linear; non-automonous;

(b) 4th order; nonlinear; non-automonous;

(b) 2nd order; linear; non-automonous; (In fact, y′′ + ln t = 0)

(d) 2nd order; nonlinear; non-automonous;

(e) 1st order; linear; automonous; (In fact, y′ = 0)

Question 2

Solution:

(a) As m > 0, the IVP can be written as

v′ +
γ

m
v = g, v(0) = 0

which is separable ODE or using the method of integrating factors. The solution formula
can be given directly. More precisely, multiply the equation by e

γ
m
t, and we have

(e
γ
m
tv)′ = e

γ
m
tg.

Taking the integral w.r.t t yields

e
γ
m
tv =

mg

γ
e
γ
m
t + C

with arbitrary constant C. Combining with the initial condition gives

0 = v(0) =
mg

γ
+ C.

1



Thus, the solution is

v(t) =
mg

γ
− mg

γ
e−

γ
m
t.

Then, from the formula, as t→∞,

v(t)→ mg

γ
.

(b) If the object reaches 90% of its limiting velocity, then

v =
mg

γ
− mg

γ
e−

γ
m
t = 0.9

mg

γ

Here m = 10, γ = 2, g = 9.8 and so

t = 5 ln 10.

The distance the object has fallen during (0, 5 ln 10) is∫ 5 ln 10

0

vdt =

∫ 5 ln 10

0

49− 49e−
t
5dt = 49(5 ln 10− 9

2
).

(c) If v 6=
√

mg
γ

, then

dv
mg
γ
− v2

=
γ

m
dt.

Observe that

1
mg
γ
− v2

=
A√

mg
γ
− v

+
B

v +
√

mg
γ

, A = B =
1

2

1√
gm
γ

,

and so after taking integral gives

−1

2

√
γ

mg
ln
∣∣∣v −

√
mg
γ

v +
√

mg
γ

∣∣∣ =
γ

m
t+ c.

Rearranging gives

v −
√

mg
γ

v +
√

mg
γ

= Ce−2
√

γg
m
t

where C is a constant. It follows from the initial condition that

v −
√

mg
γ

v +
√

mg
γ

= −e−2
√

γg
m
t

Rearranging again gives

v =

√
mg

γ

1− e−2
√

γg
m
t

1 + e−2
√

γg
m
t
.

Then, as t→∞,

v →
√
mg

γ
.
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Question 3

(a) Define M(t, y) = ( 2ty
t2+1
−2t) and N(t, y) = ln(t2+1)−2. Note that ∂t(−(2− ln(t2+1))) =

∂y(
2ty
t2+1

), so that the equation is exact. Then, integrating N(t, y) w.r.t. y gives

Ψ(t, y) = (ln(t2 + 1)− 2)y + g(t),

for some function g depending only on t. Taking the derivative w.r.t. t gives

∂tΨ(t, y) =
2ty

t2 + 1
+ g′(t) = M(t, y) ⇒ g′(t) = −2t.

Hence, g(t) = −t2 and the function Ψ is

Ψ(t, y) = (ln(t2 + 1)− 2)y − t2.

The general solution to the ODE is

(ln(t2 + 1)− 2)y − t2 = C ⇒ y =
C + t2

ln(t2 + 1)− 2
,

and by the initial condition we have C = −25, therefore

y =
t2 − 25

ln(t2 + 1)− 2
.

Rewrite the equation as

y′ = − 2t

(t2 + 1)(ln(t2 + 1)− 2)
y +

2t

ln(t2 + 1)− 2
=: p(t)y + q(t)

and note that p(t) and q(t) are continuous on (−∞,−
√
e2 − 1) or (−

√
e2 − 1,+

√
e2 − 1)

or (
√
e2 − 1,∞). As 5 ∈ (

√
e2 − 1,∞), so the existence interval of the solution to above

IVP is

(
√
e2 − 1,∞).

(b) Setting M = ye2ty, N = bte2ty, then My = e2ty + 2tye2ty, Nt = be2ty + 2btye2ty. The
equation is exact if and only if My = Nt, that is,

b = 1.

In the case b 6= 1, we compute that

Nt −My

tM − yN
=
e2ty(b− 1)(1 + 2ty)

(1− b)yte2ty
= −1 + 2ty

ty
= F (ty).

Setting z = ty, the integrating factor µ is a function of z that satisfies

dµ

dz
= F (z)µ(z) = −1 + 2z

z
µ(z)

⇒ µ(z) = z−1e−2z = (ty)−1e−2ty.
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(c) (i) Define M = y,N = 2ty − ye−2y, then My = 1, Nt = 2y. Note that

Nt −My

M
=

2y − 1

y

depends only on y, we may assume that µ = µ(y) such that (µM)y = (µN)t. Then

dµ

dy
=

2y − 1

y
µ ⇒ µ =

1

y
e2y.

Multiplying the original equation by µ(y) gives

e2y + (2te2y − 1)y′ = 0

which is exact. Then there exists a function Ψ(t, y) such that

Ψt = e2y, Ψy = 2te2y − 1.

Solving Ψt = e2y yields Ψ = te2y +h(y) with arbitrary function h(y). Then it follows
from Ψy = 2te2y − 1 that 2te2y − 1 = 2te2y + h′(y), that is, h′(y) = −1 and then
h(y) = −y. Finally, the general solution is given by

te2y − y = C

with arbitrary constant C.

(ii) Define M = 1, N = t
y
− cos y, then My = 0, Nt = 1

y
. Note that Nt−My

M
= 1

y
depends

only on y, then the integrating factor is given by

µ(y) = e
∫

1
y
dy = y.

Multiplying the original equation by µ(y) gives

y + (t− y cos y)y′ = 0

which is exact. Then there exists a function Ψ(t, y) such that

Ψt = y, Ψy = t− y cos y.

Solving Ψt = y yields Ψ = ty + h(y) with arbitrary function h(y). Then it follows
from Ψy = t− y cos y that t− y cos y = t+ h′(y), that is, h′(y) = −y cos y and then
h(y) = −y sin y − cos y. Finally, the general solution is given by

ty − y sin y − cos y = C

with arbitrary constant C.

Question 4

(a) Denote the volume of the container by V (gallons), here V = 10. The incoming chemical
supply is modeled by γ(t) (grams per gallon) with rate r (gallons per minute) flowing in,
so the amount of chemical flowing in is rγ(t) grams per minute at time t.
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Since the amount of chemical is Q(t) grams at time t, the density of chemical at time t

is Q(t)
V

grams per gallon. And the mixture (fresh+chemical) flows out at a rate r gallons

per minute. Thus the amount of chemical flowing out is rQ(t)
V

grams per minute.

Then the“velocity” of the chemical at time t is Q′(t), which means the variation of chem-
ical mass at time t. Note that at time t,

variation of chemical mass = flow in− flow out.

Thus,

Q′(t) = rγ(t)− rQ(t)

V
.

(b) The above equation is a linear ODE, the general solution is given by

Q(t) = e−
r
V
t
(
C + r

∫
γ(t)e

r
V
tdt
)

with arbitrary constant C.

(c) Take V = 10, Q(0) = 0, γ(t) = 2 + sin 2t, then from the above formula, we have

0 = Q(0) = C

This leads to the particular solution

Q(t) = re−
q
V
t

∫ t

0

γ(s)e
r
V
s ds.

Using integration by parts, we have∫
eαt sin(2t) dt =

1

α
eαt sin(2t)−

∫
2

α
eαt cos(2t) dt

=
1

α
eαt sin(2t)− 2

α2
eαt cos(2t)−

∫
4

α2
eαt sin(2t) dt

⇒
∫
eαt sin(2t) dt =

α2

α2 + 4

(
1

α
eαt sin(2t)− 2

α2
eαt cos(2t)

)
.

So that

Q(t) =re−
q
10
t

∫ t

0

(2 + sin 2s)e
r
10
sds

=20(1− e−
r
10
t) +

10r2

r2 + 400
(sin 2t− 20

r
cos 2t+

20

r
e−

r
10
t)

=
10r2

r2 + 400
(sin 2t− 20

r
cos 2t)− 20

r2 + 400− 10r

r2 + 400
e−

r
10
t + 20

Question 5

(a) The logistic equation is a separable ODE, and can be rewritten as

dp

pr(1− p/K)
= dt.
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Using partial fractions, we have

1

p(1− p/K)
=
A

p
+

B

1− p/K
, A = 1, B =

1

K
.

Then, integrating gives

1

r
ln
∣∣∣ p

p−K

∣∣∣ = t+ c

that is,

p

p−K
= Cert

where C is an arbitrary constant. The initial condition p(0) = p0 implies that

p0
p0 −K

= C.

Hence the particular solution is given by

p =
Kp0e

rt

p0ert − p0 +K
=

Kp0
p0 + (K − p0)e−rt

.

(b) If p0 = 0, then p = 0. If p0 > 0, then p→ K as t→ +∞.

(c) The equilibrium solutions to the ODE are p = 0 and p = K. To see that p = 0 is a
solution, one can use L’Hopital’s rule

lim
p→0

p ln(K/p) = lim
p→0

ln(K/p)

1/p
= lim

p→0

p/K ×−(K/p2)

−1/p2
= lim

p→0
p = 0.

Let u = ln p
K

, then u′ = p′

p
. The original ODE becomes

u′ = −ru,

thus

u = Ce−rt

where C is an arbitrary constant. Hence using that p = Keu, we have

p = K(exp(C))e
−rt

=: Kce
−rt

and the initial condition implies p0 = Kc. Thus, the particular solution is

p = K(
p0
K

)e
−rt
.

If p0 = 0, then p = 0, and if p0 > 0, then p→ K as t→ +∞.
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