Solution to Assignment 1
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For the second part, we note that cosz = % and sinz = eiz;f_m, SO
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Asn,m > 1, n+m # 0. By the above results,
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2(a). In polar coordinates, x = rcosf and y = rsinf. We see that U(r,0) =

u(r cosf,rsind), and hence,
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Differentiate one more time, we get
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and
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Hence, combining all the above formulas, it is easily seen that
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Remark. For a more natural derivation, one should show that
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Then compute 0 4 get the result. For detail, please refer to the PDE textbook:

9z27 9y
” Partial differential equations, An introduction, Walter Strauss”.
2(b). Let U(r,0) = F(r)G(#) and put it into the polar Laplace equation.
r2F"(r)+rF'(r)  G"(0)
F(r) - GO)
The left hand side of (0.1) is a function of r while the right hand side of (0.1) is a

function of 6, so the expression must be a constant . Hence, we obtain G”+aG = 0.
From elementary ODE, We have three cases

G(0) = A, cos(v/ab) + B, sin(y/ab), if a > 0;
G(0) = Anb + B,, if a =0;
G(0) = A, cosh(v/—ab) + B, sinh(y/—ab), if a <0.

Note that G must be 27 periodic, so o = n?, where n =0, 1, 2....
(1)If n = 0, then G(0) = By. We have from (0.1)
r?F"(r)+TF'(r) = 0.

(0.1)

Solving it using separation of variables, F'(r) = C'lnr + D. However, Inr is
unbounded when r goes to zero but the solution is bounded in the origin, hence we have

C=0and F(r)=D
. The solution is of desired form.

(ii) If n > 0, then @ = n? and G(0) = A, cos(nf) + Bsin(nf). Putting back to
(0.1), we have

r?F"(r) +F'(r) — n*F(r) = 0. (0.2)
For this equation, we try F(r) = r* for some k. Then
(k(k— 1)+ k —n?)r" =0.
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As this needs to be true for all r, we must have k* — n? = 0 and hence k = £n.
The ODE in (0.2) is of 2" order and linear, so the solution space is of dimension
2. Moreover, the solutions r™ and r~" are linearly independent, this implies all the
solutions to (0.2) are given by

F(r)=Cyr" + Dpr.

Since the solution is bounded in the origin, we have

D, =0 and F(r) = C,r"
. Hence, the solution is given by

U(r,0) = F(r)G(0) = r"(A, cosnf + B, sinnb).



