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Exercise 7.A

1 Let β be the standard basis for Fn, which is orthonormal. By Theorem 7.10 in the book, we

have [T ∗]β = ([T ]β)∗, so we see that

[T ]β =


0

1
. . .
. . .

. . .

1 0

 , [T ∗]β =


0 1

. . .
. . .
. . . 1

0

 .

Hence, the adjoint of T is given by T ∗(z1, . . . , zn) = (z2, . . . , zn, 0).

2 Consider the operator T − λI on V , by the last part of previous exercise, we see that

dim ker(T − λI)∗ = dim ker(T − λI) + dimV − dimV = dim ker(T − λI)

But ker(T − λI)∗ = ker(T ∗ − λ̄I∗) = ker(T ∗ − λ̄I). Hence, dim ker(T − λI) > 0 if and only if

dim ker(T ∗ − λ̄I) > 0, which essentially means that λ is an eigenvalue of T if and only if λ̄ is

an eigenvalue of T ∗.

3 Suppose U is T -invariant. For any u⊥ ∈ U⊥, we have
〈
T ∗u⊥, u

〉
=
〈
u⊥, Tu

〉
= 0 for any

u ∈ U as Tu ∈ U . This means T ∗u⊥ ∈ U⊥, i.e. U⊥ is T ∗-invariant.

4 First we recall a useful fact from Proposition 7.7 in the book

rangeT ∗ = (kerT )⊥ , kerT ∗ = (rangeT )⊥ .

Since all spaces are finite dimensional, we have U =
(
U⊥
)⊥

for any subspace U .

(a) From the above, we immediately see that T is injective if and only if kerT = {0}, which

means rangeT ∗ = V and T ∗ is surjective.

(b) Again, the result follows from taking orthogonal complement on the second equality.

5 (a) By Proposition 7.7 in the book, we have

dim kerT ∗ = dim(rangeT )⊥ = dimW − dim rangeT.

Then by the fundamental theorem of linear maps

dimV = dim kerT + dim rangeT,

we have

dim kerT ∗ = dimW − dimV + dim kerT.
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(b) Using the fundamental theorem of linear maps with respect to T and T ∗

dimV = dim kerT + dim rangeT ;

dimW = dim kerT ∗ + dim rangeT ∗

and combining the result of (a), we can easily get

dim rangeT = dim rangeT ∗.

6* (a) If T is self-adjoint, then for any polynomials p(x) = a0 + a1x + a2x
2 and q(x) = b0 +

b1x+ b2x
2, we have that

〈Tp, q〉 = 〈p, T ∗q〉 = 〈p, Tq〉
⇒ 〈a1x, b0 + b1x+ b2x

2〉 = 〈a0 + a1x+ a2x
2, b1x〉

⇒ a1(
b0
2

+
b1
3

+
b2
4

) = b1(
a0
2

+
a1
3

+
a2
4

)

This is obviously not true if we take a0 = a2 = b0 = b1 = b2 = 1, and a1 = 0.

(b) The reason is that (1, x, x2) is not an orthogonal basis.

14 We see that v and w are eigenvector, corresponding to distinct eigenvalues of T . By Propo-

sition 7.22 in the book, v and w are orthogonal. Then, using Pythagoras theorem, we have

‖T (v + w)‖2 = ‖3v + 4w‖2

= ‖3v‖2 + ‖4w‖2

= 3222 + 4222 = 100.

Hence, we have ‖T (v + w)‖ = 10.

15* First of all, we notice that, for any v, w ∈ V , we have

〈v, T ∗w〉 = 〈Tv,w〉 = 〈〈v, u〉x,w〉 = 〈v, u〉 〈x,w〉 = 〈v, 〈w, x〉u〉 .

So, T ∗ ∈ L(V ) is given by T ∗w = 〈w, x〉u.

(a) Suppose F = R. If u = 0, then the statement is trivial. So, let’s assume u 6= 0. Now, we

have

(T − T ∗)v = 〈v, u〉x− 〈v, x〉u.

If T is self-adjoint, we simply take v = u and as the left hand side vanishes, then we

have x = 〈u,x〉
〈u,u〉u. On the other hand, if {u, x} is linearly dependent, say x = αu, then

〈v, u〉 (αu)− 〈v, αu〉u is always zero in a real space, which means (T − T ∗)v = 0 for any

v ∈ V , that is, T = T ∗.

(b) Again, we assume that u 6= 0. Consider the difference

(TT ∗ − T ∗T )v = 〈〈v, x〉u, u〉x− 〈〈v, u〉x, x〉u
= 〈v, x〉 〈u, u〉x− 〈v, u〉 〈x, x〉u.

Similarly, if T is normal, then we have a non-trivial sum of x and u. And if x = αu for

some α ∈ F, we see that the right hand side vanished. Hence, the statement follows.
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21 (a) For any α ∈ R and any f, g ∈ Un, say

f = a0 +
∑

ak cos kx+
∑

bk sin kx,

g = c0 +
∑

ck cos kx+
∑

dk sin kx,

we have

D(f + αg) =−
n∑
k=1

k(ak + αck) sin kx+

n∑
k=1

k(bk + αdk) cos kx ∈ Un

=

(
−

n∑
k=1

kak sin kx+

n∑
k=1

kbk cos kx

)
+ α

(
−

n∑
k=1

kck sin kx+

n∑
k=1

kdk cos kx

)
=D(f) + αD(g).

This shows that D is a linear operator on Un.

To see that D∗ = −D, we first notice that f(−π) = f(π) for any f ∈ Un. Using

integration by parts, we have, for any f, g ∈ Un, that∫ π

−π
f ′(x)g(x) dx = [f(x)g(x)]π−π −

∫ π

−π
f(x)g′(x) dx =

∫ π

−π
f(x)

[
−g′(x)

]
dx.

Hence, we have

〈f,D∗(g)〉 = 〈D(f), g〉 =
〈
f ′, g

〉
=
〈
f,−g′

〉
= 〈f,−D(g)〉 .

and D∗ = −D. Obviously, D is normal, as DD∗ = −D2 = D∗D, but not self-adjoint.

(b) Again, we use integration by parts to get∫ π

−π
f ′′(x)g(x) dx =

[
f ′(x)g(x)

]π
−π−

[
f(x)g′(x)

]π
−π+

∫ π

−π
f(x)g′′(x) dx =

∫ π

−π
f(x)g′′(x) dx

for any f, g ∈ Un (so f ′, g′ ∈ Un as D is an operator). This means

〈f, T ∗(g)〉 = 〈T (f), g〉 =
〈
f ′′, g

〉
=
〈
f, g′′

〉
= 〈f, T (g)〉

for any f, g ∈ Un, that is, T ∗ = T is self-adjoint.

Exercise 7.B

2 It is equivalent to prove that (T − 2I)(T − 3I) = 0. By Theorem 7.29 in the book, there

exists an orthogonal basis consisting of eigenvectors of T. So For any vector v, it can be

decomposed as v = v1 + v2, where v1, v2 belong to the eigenspaces which can be spanned by

the eigenvectors corresponding to the eigenvalue 2, 3 respectively. Then we have Tv1 = 2v1
and Tv2 = 3v2, so

(T − 2I)(T − 3I)v = (T − 2I)(Tv1 + Tv2 − 3v1 − 3v2)

= (T − 2I)(−v1) = −2v1 + 2v1 = 0

Hence T 2 − 5T + 6I = 0 holds.
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3* Similar to the argument in Question 2 and combined with Proposition 7.24 in the book, if T

is normal then T 2 − 5T + 6I = 0 also holds. So we need to construct an operator which is

not normal. Similar to the example given on the first page of the lecture of week 12, we can

define T as

T

xy
z

 =

2 0 0

0 3 1

0 0 3

xy
z

 .
Then T has only eigenvalues 2, 3. And by simple calculation we have

T 2 − 5T + 6I =

4 0 0

0 9 6

0 0 9

−
10 0 0

0 15 5

0 0 15

+

6 0 0

0 6 0

0 0 6

 =

0 0 0

0 0 1

0 0 0

 6= 0.

4 By the complex Spectral theorem, we can substitute the statement ” T is normal ” by ” there

exists an orthogonal basis of V consisting of eigenvectors of T.”

(⇒) If there exists an orthogonal basis of V consisting of eigenvectors of T., then the results

obviously holds.

(⇐) To prove that there exists an orthogonal basis of V consisting of eigenvectors of T, it

suffices to prove that in each eigenspace E(λi, T ), 1 ≤ i ≤ m, we can find an orthogonal

basis of the subspace E(λi, T ), while this can be done by the GramSchmidt Procedure.

6 (⇒) If T is self-adjoint, then by Theorem 7.13 in the book, its eigenvalues are all real.

(⇐) If the eigenvalues λ1, λ2, · · · , λn of a normal operator T are all real, then we can take the

corresponding eigenvectors e1, e2, · · · , en as an orthogonal basis of V. Then it suffices to

prove that Tei = T ∗ei, ∀ 1 ≤ i ≤ n. While by Theorem 7.21 in the book, we have that

Tei = λiei, T ∗ei = λiei,

then the result follows immediately if every λi is real.

7 If λ is an eigenvalue of T with an eigenvector v, then

Tv = λv ⇒ (T 9 − T 8)v = (λ9 − λ8)v = 0⇒ λ9 = λ8

Thus the eigenvalues of T must be a root of λ9 = λ8, which implies that the eigenvalues of T

can only be 0 or 1. Then by Problem 6, T is self-adjoint.

By the spectral theorem, T has a diagonal matrix M with respect to some orthonormal basis,

where the diagonal entries can only be 0 or 1, so there holds M2 = M, which implies T 2 = T.

9 By the complex spectral theorem, V has an orthogonal basis e1, · · · , en which are eigen-

values of T corresponding to the eigenvalues λ1, · · · , λn ∈ C respectively. Then we choose

µ1, · · · , µn ∈ C, such that λj = µ2j , ∀ j. Define a linear operator S ∈ L(V ) with

Sej = µjej , ∀ j

Then we have

S2ej = µ2jej = λjej = Tej , ∀ j

which implies S2 = T.
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Extra

1

p(λ) = det(λ−A) = (λ− 2)3 − 3(λ− 2)− 2

Note that p(1) = 0, then

p(λ) = (λ− 1− 1)3 − 3(λ− 1) + 1 = (λ− 1)3 − 3(λ− 1)2 + 3(λ− 1)− 1− 3(λ− 1) + 1

= (λ− 1)3 − 3(λ− 1)2 = (λ− 1)2(λ− 4)

Thus A has eigenvalues 1 and 4.

λ = 1 :

(1−A)

xy
z

 =

−1 1 1

1 −1 −1

1 −1 −1

xy
z

 =

−x+ y + z

x− y − z
x− y − z

 = 0⇒ x = y + z

Then the eigenvectors of λ = 1 are (x, y, z) = (1, 1, 0) and (1, 0, 1). By the Gram-Schmidt

Procedure on these two eigenvectors, we have two orthogonal eigenvectors

e1 =
1√
2

(1, 1, 0), e2 =
1√
6

(1,−1, 2)

λ = 4 :

(1−A)

xy
z

 =

2 1 1

1 2 −1

1 −1 2

xy
z

 =

2x+ y + z

x+ 2y − z
x− y + 2z

 = 0⇒ y = −x, z = −x.

Then the eigenvector of λ = 4 is (x, y, z) = (−1, 1, 1), which can be normalized as

e3 =
1√
3

(−1, 1, 1)

Thus the orthogonal matrix is

Q =
(
e1 e2 e3

)
=


1√
2

1√
6
− 1√

3
1√
2
− 1√

6
1√
3

0 2√
6

1√
3


2

p(λ) = det(λ−A) = λ3 − 3λ+ 2

Note that p(1) = 0, then

p(λ) = (λ− 1 + 1)3 − 3(λ− 1)− 1 = (λ− 1)3 + 3(λ− 1)2 + 3(λ− 1) + 1− 3(λ− 1)− 1

= (λ− 1)3 + 3(λ− 1)2 = (λ− 1)2(λ+ 2)

Thus A has eigenvalues 1 and −2.
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λ = 1 :

(1−A)

xy
z

 =

 1 1 −1

1 1 −1

−1 −1 1

xy
z

 =

 x+ y − z
x+ y − z
−x− y + z

 = 0⇒ z = x+ y

Then the eigenvectors of λ = 1 are (x, y, z) = (1, 0, 1) and (0, 1, 1). By the Gram-Schmidt

Procedure on these two eigenvectors, we have two orthogonal eigenvectors

e1 =
1√
2

(1, 0, 1), e2 =
1√
6

(1, 2,−1)

λ = −2 :

(−2−A)

xy
z

 =

−2 1 −1

1 −2 −1

−1 −1 −2

xy
z

 =

−2x+ y − z
x− 2y − z
−x− y − 2z

 = 0⇒ y = x, z = −x.

Then the eigenvector of λ = 4 is (x, y, z) = (1, 1,−1), which can be normalized as

e3 =
1√
3

(1, 1,−1)

Thus the orthogonal matrix is

Q =
(
e1 e2 e3

)
=


1√
2

1√
6

1√
3

0 2√
6

1√
3

1√
2
− 1√

6
− 1√

3



6


