MATH2040C Linear Algebra II
2017-18 Solution to Homework 5

Exercise 6.A
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Taking 1 = x3 = 0,22 = 1 leads to ||(x1,z2,z3)|| = 0, so this is not an inner product.

If Tv = 0, then Tw = v/2v, then 2|v|| = || Tv|| < |Jv||, which implies that |jv|]| = 0, then v = 0.
So T' is invertible.

We prove it by the induction method. When n = 1, it obviously holds. Assume for 1 < n < k,
the inequality holds, then for n = k£ + 1, using the Cauchy-Schwarz Inequality, we have

(w14t an+ o)’ = (@14 +20)” + 23+ 2 (21 )
<k(z]+- -+ 2%) + Tjoq + 201 (21 + - + xR
<k(@+ -+ 2) + 2y + (@i D)+ 4 (i tan) = (k+ D)2+ 2p + 37)

Firstly the definition of domain of arccos is [—1, 1], where by Cauchy-Schwarz Inequality
M € [—1, 1]. Secondly, since the angel between two vectors is invariant under the scal-

I o
ing of these two vectors, for any nonzero numbers Ai, Ao, iz doy) (2,9 So this

Ayl Nyl

definition makes sense.

lu+? = llu = v]]* = (u+v,u+v) = (u—v,u—wv)
=llull® + (u, v) + (v, u) + [[o]* = [lull* + {u, v) + (v,0) — [|v]?
=4(u,v)

Since S is not injective, there exists a nonzero vector v € V such that Su = 0. Then (u,u); =
(Su, Su) = 0, which means (,); is not an inner product.

Exercise 6.B

2*

By Property 6.35, we can extend the orthogonal list e;,---,e, to an orthogonal basis
€1, y€m,Em+1, "+ ,€n Of V where m < n =dimV. Thus v = aje; + - - + ane, with
a; = (v, e;) and ||UH2 = |a1\2 4+ 4 |an|2.

Thus we have that [[v|? = |a1]? + -+ + |am|? if and only if apy1 = -+ = a, = 0, which is

true if and only if v € span{ey,- - e;,}.
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It is obvious that H\/%H =1 and for any j,k=1,--- ,n,

VARV o VT VT - 2
<cosj:c cos km) B /“ cos jx cos kx dp — 1 /” cos((j — k)x) + cos((j + k)z) dp — 0,ifj#k
NV IRV S S V. S 2 a
Denote v; = 1,vy = z,v3 = 22, then by the Gram-Schmidt Procedure,
U1
el = = y
o]l
1
vy — (va, e1)eq T3 1
ey = = = 2\/§ r— =),
2= Tog—(omearll  a=3] V02
2 1
- - —z+i 1
o5 — vz — (v3,e1)e; — (U3, e2)en _ :L”2 $+? —6vB(a? — a4 1)
[z = (vs, ex)er — (vs, ea)ea]|  [J2? —z + g 6

If we define ¢ : Po(R) — R by ¢(p) = p(3), then Riesz representation theorem guarantees that
there exists a unique g € Po(R) such that ¢(p) = (p,q) for all p € Po(R). The proof of Riesz
representation theorem gives an explicit way to construct ¢q. First, we pick an orthonormal
basis of P2(R), say {e1, e2, es} where

1
e1=1, ex=+32x—1), e3=+180 <x2—x+6>.

Then, for a real vector space, we have
1 1 3
q¢= <p(1)1+go(\/§(2x—1))\/5(235—1)+go(\/180(x2—x+6))\/180(x2—x+6) = —15x2+15x—§.

If we apply the Gram-Schmidt Procedure on linearly depend list, say {vi,v2} with va = vy,
then we have vy — (v2, ”51”>HZ—1H = Av; — v = 0.

It suffices to prove that {vy,-- - , vy} is linearly independent. Assume that ajvi+- - -+a,v, =0,
then aj(e; —v1)+- -+ an(en —vy) = are; +- -+ apey,. Taking the norm of each side leads to

lar(er —v1) + - + an(en —vn)|I* = lazes + - + anen|* =af + - +ap
But by the Triangle Inequality 6.18, the right hand side
lai(er —v1) + -+ + an(en — vn)l| < larlller —vill + -+ - + [anlen — vall

Thus if a1 = a9 = --- = a, = 0 does not hold, then there holds

af + - +ap < (Jarller —vill 4 +lanlllen —val)* < = (laa] + - + |an])®

1
n
which contradicts with Q12 in Ex 6.A.



Exercise 6.C
4 First, we extend {(1,2,3,—4),(—5,4,3,2)} to some basis of U, say 8 = {v1, v, v3,v4}, where
-5

v = V3 =

W N =
N W
O = O O
— o O O

V1 1
u = - (1,2,3,-4
Sl PRV )
vy — (v2,u1) Uy 1
s = - —77.56,39, 38
2= oy — (o w) ] V12030 )
vg — (v3,u1) Uy — (v3, u) u2 1
uz = - 60, —153, 230,111
57 Jjvs — (vs, u1) ug — (vs, ug) usl| \/92230( )
g — vy — (vg, u1) Uy — (Vg, u2) U — (V4, U3) U3 _ 1 (10,9,0,7)
|v4 — (va,u1) ug — (v, u2) ug — (va,uz) usgl] /230

5 By Property 6.47, any v € V can be written as v = vy + vy where vy € U, vy € U*. Then by
Properties 6.55 (b), we have that vy = Pyv, va = Pyiv, which means v = Pyv + Pyiv.

6%(=): If PyPy =0, then for all u e U, w € W, (u,w) = (Pwu+ Py ru, Prw + Pyiw).
As Pyu+ Pyiu € U and Pyw + Priw € W, we have that

(u,w) = (Pwu, Pyw) = (Py + Py )Pwu, Pyw) = (Py Pywu, Pyw) = 0.

(<): If for all w € U, w € W,(u,w) = 0, then for any v € V, PyPyv € U N W, then
HPUPWv||2 = <PUPV[/’U, PUPV[/’U> = 0, then PUPWv =0.

7 We show that U = range P and P is the orthogonal projection of V' onto the range of P.
Firstly we show that ker P & range P. Note that

v=Pv+ (I —-P)v,

with (I — P)v € ker P (because P(I — P)v = (P — P?)v = 0) and Pv € range P. This shows
that V' = ker P +range P. In addition, ker PNrange P = {0} because for u € ker PNrange P,
we have u = Pu’ for some v’ € V' as u € range P, then

u= Pu = P/ = P(Pu) = Pu=0

as u € ker P. This shows that V' = ker P @ range P.

Secondly combined with that every vector in ker P is orthogonal to every vector in range P,
then we have that ker P = (range P)*. Then V = range P @ (range P)* and P = Py is the
orthogonal projection of V' onto range P.

8* We show that U = range P and P is the orthogonal projection of V' onto the range of P.
Note that same to the proof of Q7, we have V = ker P @ range P.
Then we show that ker P = (range P)*. Note that we have V = range P @ (range P)*. If

3



we can show that ker P C (range P)*, then, by the dimension, we have ker P = (range P)*.
The claim is true because for any w € range P, we have w = Pw’ for some w’' € V, but
w = Pw' = P?>w' = P(Pw') = Pw. So, for any u € ker P, we have

|w|| = [|[Pw] = |P(w + au)|| < [|w + aul|

for any a € F. After expanding the inner products, we have 0 < a@ (w, u) +a (u, w) +|al? (u, u).
In particular, we take a = —% to obtain (u,w) = 0, which means u € (range P)* since w
is arbitrary.

Finally, we have P = Py as an orthogonal projection of V' onto range P.

11 Denote v = (1,2,3,4), then
Pyv — || = min [ju —
1Py = vf| = min [lu — o]

/‘\

It is easy to find an orthogonal basis {e1,es} = {\1[(1, 1,0,0), 7 0,0,1,2)} of U. Thus we

have
11 22

"5 5

w\oo
w\oo

Pyv = (v,e1)e1 + (v, ez)ea = —=e1 + —=e2 = (5,

xf xf

12 Denote U = {p(z) € P3(R) : p(0) = p/(0) = 0} = span {x2, 23}, and (f, g) fo x)dzx to
be the usual inner product. Similarly, we have that Py (2 4 3z) is the polynomlal to achleve

)

the minimum value.
Using the Gram-Schmidt Procedure on the basis {22, 23}, we can find an orthogonal basis
{e1,e2} = {V/52%,6V7(23 — 322)} of U, hence we have

85 » 203

203 203
12 60

10 x> + 2422

Py(243x) = (2 + 3z, e1)er + (2 + 3z, e)en = (623 — 5a?) = —

14* (a) For any g € U, we have that (f,g) f f(x)g(x) de =0,V f e U.
If g(x) is not zero, by the continuity, there eX1sts a posmve number € > 0 and a nonzero
point zy € (—1,1) such that |g(zo)] > €. And then there exists a small enough and
positive number ¢ such that for any x € (29—, x9+d) which does not contain 0, |g(z)| >
€/2. Thus we can choose a sequence of functions f,(x) € U, such that f,(x) converges
to the function

f(x):{ 1, ifz € [xg — 0,20 + I]

0, otherwise.

Then we have that

1 ‘ 1
[ s o=t [ @ dr =0

x0+6 €
/f dac—/ g(x)dx2§><25>0

0—90
which is a contradiction.
(b) By (a), we have that Cr([—1,1]) # U @ U+. And (UL)*+ = 0+ = Cr([-1,1]) # U.



