MATH 2040C Linear Algebra II
2017-18 Term 2
Midterm 2

Honesty in Academic Work: The Chinese University of Hong Kong places very high
importance on honesty in academic work submitted by students, and adopts a policy of zero
tolerance on cheating and plagiarism. Any related offence will lead to disciplinary action
ncluding termination of studies at the University.

NAME: ID:

Instruction: Answer ALL questions and show your work with explanation.

Time: 60 minutes
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1. (True or False) Please circle the correct answer. Each question is worth 1 point.

(a) A list of orthonormal vectors vy, vs,...v, in an inner product space is linearly

independent.
FALSE

(b) Let T': V. — W be an isomorphism between finite dimensional real vector spaces
V and W. Then for any ordered bases a of V' and 8 of W, M(T, «, ) is a square

matrix and is invertible.
FALSE

(c) Let V be a finite dimensional vector space. For any diagonalizable S,T € L(V),

S+ T € L(V) is also diagonalizable.
TRUE

(d) Let T be a linear operator on a vector space V. Then the set of eigenvectors
corresponding to an eigenvalue of T is a subspace of V.

(e) For any linear operator T on R7, there exists an ordered basis 3 of R such that
M(T, B) is upper triangular.

True & \F = ¢, (Schur's TkQOTQM) TRUE

(f) For any finite dimensional complex vector spaces V and W, the complex vector
spaces L(V, W) and L(W, V) are isomorphic.

Same. dimomsipn, = TSUVV\WP\I\TC, FALSE

(g) Every finite dimensional inner product space has an orthonormal basis.

(h) Let V be a real inner product space and v,w € V. Then |jv + w| = ||v|| + ||w]|| if
and only if there exists a real number ¢ such that v = cw or w = cv.

C70 TRUE



2. (8 pts) Answer the following questions.

(a) Let V be a real inner product space and v, w € V. Show that

1
{v,0) = 2 (llv +wl® — [Jv —w|).
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(b) Let V be a finite dimensional real vector space and T' € £(V'). Suppose v,w € V

are non-zero vectors such that 7T'(v) = 4w and T'(w) = 4v. Show that T has at
least one eigenvalue.
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3. (9 pts) Let P2(R) be the vector space of all real polynomials of degree at most 2 and
B = {1,z,22} be an ordered basis of P(R). Define a linear operator T on Pa(R) by

T(p(x)) = zp'(z) — p(1).
(a) Find the matrix M(T, 3);
(b) Find all the eigenvalues of T’;

(c) Determine if T is diagonalizable. If so, find an eigenbasis o of T' and the corre-
sponding matrix M (T, «).
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4. (6 pts) Let V be a vector space and T' € L(V'). Suppose vy,vy € V is an eigenvector of
T corresponding to eigenvalue A1, A2 respectively and v1 # ve. Prove that v1 — vo is an
eigenvector of 7" if and only if \; = As.
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5. (9 pts) Let V = P2(R) be the vector space of all real polynomials of degree at most 2
Define an inner product on V' by

(p,q) = p(0)q(0) +2p(1)q(1) +p(2)q(2) for any p,q € V. ()

(a) Apply the Gram-Schmidt Process to {1,z} C V to obtain an orthonormal list.

(b) Does the formula () define an inner product on P3(R), the vector space of all real
polynomials of degree at most 37 Justify your answer.
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L. N
b pud= X1y € B (R)

Them Pm +0 bar
<P'?> - (J(OB\)(O)Jc 1}5(()‘3\\5 + P().}w;)
= (0)(0) + (NS + (0d(0)

= 0
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—END OF TEST 2—
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