
Math2040 Tutorial 8

Orthonormal basis

• orthonormal ⇔ unit ‖vi‖ = 1 and orthogonal 〈vi, vj〉 = 0 for i 6= j

• {e1, . . . , en} orthonormal basis ⇒ v = 〈v, e1〉 e1 + · · ·+ 〈v, en〉 en for all v

• Gram-Schmidt process e1 = v1
‖v1‖ , ej =

vj−
∑

k<j〈vj ,ek〉ek
‖vj−∑k<j〈vj ,ek〉ek‖

for j > 1

• there exists orthonormal basis β of V (finite dim., complex) such that [T ]β upper-triangular

Lecture 11, Example 6. Let β = {v1, . . . , vn} be an orthonormal basis of a finite dimensional
inner product space (V, 〈·, ·〉). For any T ∈ L(V ), the matrix [T ]β is given by ([T ]β)ij = 〈Tvj , vi〉.

1. suppose Tvj = A1jvi + · · ·+Anjvn for j = 1, . . . , n

2. by definition, we have ([T ]β)ij = Aij

3. on the other hand, by orthonormal basis, we have Aij = 〈Tvj , vi〉

Orthogonal complements

• orthogonal complement U⊥ = {v ∈ V : 〈v, u〉 = 0 for all u ∈ U}

• U finite dim. subspace of V ⇒ V = U ⊕ U⊥ and U =
(
U⊥
)⊥

Lecture 12, Example 1. Let V = {f : [−1, 1]→ R continuous} be the real vector space equipped
with the L2-inner product 〈f, g〉 =

∫ 1
−1 f(x)g(x) dx. Consider the following subspaces of odd and even

functions respectively:

Uodd := {f ∈ V : f(−x) = −f(x) for all x ∈ [−1, 1]},
Ueven := {f ∈ V : f(−x) = f(x) for all x ∈ [−1, 1]}

.

then we have U⊥odd = Ueven.

1. (U⊥odd ⊂ Ueven) let f ∈ U⊥odd, want to show f ∈ Ueven, i.e. f(−x) = f(x)

2. f ∈ U⊥odd means 〈f, g〉 = 0, i.e.
∫ 1
−1 f(x)g(x) dx = 0, for any g ∈ Uodd

3. using change of variable,
∫ 1
−1 f(−x)g(x) dx = 0 for any g ∈ Uodd

4. combine to get
∫ 1
−1 [f(x)− f(−x)] g(x) dx = 0 for any g ∈ Uodd

5. but f(x)− f(−x) ∈ Uodd, take g(x) = f(x)− f(−x), we have
∫ 1
−1 [f(x)− f(−x)]2 dx = 0

6. as f(x) and f(−x) continuous, f(x)− f(−x) = 0, i.e. f(x) = f(−x), so f ∈ Ueven

7. (U⊥odd ⊃ Ueven) for f ∈ Ueven, we have 〈f, g〉 = 0 for any g ∈ Uodd since f is even but g is odd,
so f ∈ U⊥odd
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Lecture 12, Proposition 2. Let (V, 〈·, ·〉) be an inner product space.

(a) U⊥ is a subspace of V for any subset U ⊂ V .

1. 0 ∈ U⊥ as 〈0, u〉 = 0 for any u ∈ U
2. for any w1, w2 ∈ U⊥, by the linearity of inner product, we have

〈a1w1 + a2w2, u〉 = a1 〈w1, u〉+ a2 〈w2, u〉 = 0

for any u ∈ U , so a1w1 + a2w2 ∈ U⊥

⇒ so U⊥ is a subspace of V

remark. U⊥ is always a subspace, but U is not necessarily a subspace

(b) {0}⊥ = V and V ⊥ = {0}.

1. since 〈v, 0〉 = 0 for any v ∈ V , then V ⊂ {0}⊥; obviously {0}⊥ ⊂ V ; hence {0}⊥ = V

2. suppose u ∈ V ⊥, we have 〈u, v〉 = 0 for any v ∈ V ; take v = u, then 〈u, u〉 = 0, so u = 0;
hence V ⊥ = {0}

(c) For any subset U ⊂ V , we have U ∩ U⊥ ⊂ {0}.

1. if U ∩ U⊥ is not empty, then for v ∈ U ∩ U⊥, we have 〈v, v〉 = 0, so v = 0

(d) For any subsets U ⊂W ⊂ V , we have W⊥ ⊂ U⊥.

1. for any w⊥ ∈W⊥, so
〈
w⊥, w

〉
= 0 for any w ∈W

2. but u ∈ U ⊂W , so
〈
w⊥, u

〉
= 0 for any u ∈ U , hence w⊥ ∈ U⊥

Lecture 12, Proposition 3. If U is a finite dimensional subspace of an inner product space (V, 〈·, ·〉),
then V = U ⊕ U⊥. Moreover, we have U =

(
U⊥
)⊥

0. It is shown, in the lecture, that V = U ⊕ U⊥, we now show that U =
(
U⊥
)⊥

1. (U ⊂
(
U⊥
)⊥

) for any u ∈ U , we have
〈
u, u⊥

〉
= 〈u⊥, u〉 = 0 = 0 for any u⊥ ∈ U⊥, so u ∈

(
U⊥
)⊥

2. (U ⊃
(
U⊥
)⊥

) for any v ∈
(
U⊥
)⊥

, we write v = u+ u⊥ for some u ∈ U and u⊥ ∈ U⊥

3. u⊥ = 0 because 0 =
〈
v, u⊥

〉
=
〈
u, u⊥

〉
+
〈
u⊥, u⊥

〉
=
〈
u⊥, u⊥

〉
, so v = u ∈ U
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