Math2040 Tutorial 8

Orthonormal basis

e orthonormal < unit ||v;|] = 1 and orthogonal (v;,vj) = 0 for ¢ # j

e {e1,...,e,} orthonormal basis = v = (v,e1)e; + -+ - + (v, ey,) €, for all v

e Gram-Schmidt process e; = 2 _ kg lnekler g j>1
H111H7 ij Zk<J<v3,ek ekH

e there exists orthonormal basis § of V' (finite dim., complex) such that [T]g upper-triangular

Lecture 11, Example 6. Let § = {v1,...,v,} be an orthonormal basis of a finite dimensional
inner product space (V, (-,-)). For any T' € L(V'), the matrix [Tz is given by ([T]3)i; = (T'vj, v;).

1. suppose Tvj = Ayjv; +--- + Apjop for j=1,...,n
2. by definition, we have ([T]g)i; = Aij

3. on the other hand, by orthonormal basis, we have A;; = (T'v;, v;)

Orthogonal complements
e orthogonal complement U+ = {v € V : (v,u) = 0 for all u € U}

e U finite dim. subspace of V=V =U @ Ut and U = (Ul)L

Lecture 12, Example 1. Let V ={f: [ 1 , 1] = R continuous} be the real vector space equipped
with the L?-inner product (f, g) f f(x)g(x) dx. Consider the following subspaces of odd and even
functions respectively:

Upga ={f €V : f(—x) =—f() for all z € [-1,1]},
Ueven = {f €V : f(—x) = f(x) for all x € [-1,1]}

then we have UOde = Usven-
(U 9d C Ueven) let f € U(ﬁid, want to show f € Ueyen, i.6. f(—2x) = f(x)
2. feU dd means (f,g) =0, i.e. f_ll f(z)g(z)dx =0, for any g € Uygq
3. using change of variable, f_ll f(=x)g(x)dx =0 for any g € Uyqq
4. combine to get fil [f(z) — f(=x)] g(x)dx = 0 for any g € Upqq
5. but f(z) — f(—) € Upaa, take g(z) = f(z) — f(~2), we have [, [f(z) — f(~2)] d =0

6. as f(x) and f(—=z) continuous, f(x) — f(—xz) =0, i.e. f(z) = f(—x), s0 f € Uecyen

7. (U G D Ueven) for f € Ueven, we have (f,g) = 0 for any g € Uyqq since f is even but g is odd,
so f € UO ad



Lecture 12, Proposition 2. Let (V,(:,-)) be an inner product space.
(a) Ut is a subspace of V for any subset U C V.

1. 0 € Ut as (0,u) =0 for any u € U

2. for any wq,ws € UL, by the linearity of inner product, we have
(1w + agwa, u) = ay (w1, u) + az (wa,u) =0

for any u € U, so ajw; 4+ aswy € U+
= so Ut is a subspace of V/

remark. UL is always a subspace, but U is not necessarily a subspace
(b) {0} =V and V+ = {0}.

1. since (v,0) = 0 for any v € V, then V C {0}; obviously {0}* C V; hence {0}* =V

2. suppose u € V*, we have (u,v) = 0 for any v € V; take v = u, then (u,u) = 0, so u = 0;
hence V+ = {0}

(c) For any subset U C V, we have U N U+ C {0}.

1. if UNU* is not empty, then for v € U N UL, we have (v,v) = 0, so v = 0
(d) For any subsets U C W C V, we have W+ C U*.

1. for any wt € W, so <wL,w> =0 for any w € W

2. but ue U C W, so <wJ-,u>:0for any u € U, hence wt € U+

Lecture 12, Proposition 3. If U is a finite dimensional subspace of an inner product space (V, (-, -)),
then V = U @ U'. Moreover, we have U = (UL)L

0. It is shown, in the lecture, that V = U @ U, we now show that U = (Ul)J'
1. (UcC (UL)L) for any u € U, we have (u,u’) = (ul,u) =0 =0 for any u* € U+, sou € (UL)J'
2. (U>D (UL)L) for any v € (UL)L, we write v = u + ut for some u € U and u* € U+

3. ul = 0 because 0 = <v,ul> = <u,uL> + <ul,uL> = <uL,uL>, sov=uclU



