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1 Partial derivatives

Definition 1. The partial derivative of f(x, y) with respect to x at the point (x0, y0) is

∂f

∂x
|(x0,y0)= lim

h→0

f(x0 + h, y0)− f(x0, y0)

h
,

and the partial derivative of f(x, y) with respect to y at the point (x0, y0) is

∂f

∂y
|(x0,y0)= lim

h→0

f(x0, y0 + h)− f(x0, y0)

h
,

provided the limits exist.

Remarks:

1. The expressions ∂f
∂x
|(x0,y0),

∂f
∂x

(x0, y0),
d
dx
f(x, y0) |x=x0 , fx(x0, y0) are equivalent.

2. We may use the conclusions we learn in the derivative of functions of one variable
to compute the partial derivatives by regarding x or y as constant.

Example 1: Let f(x, y) = x2 + 2xy2, then

fx =
d

dx

(
x2 + 2xy2

)
= 2x + 2y2,

fy =
d

dy

(
x2 + 2xy2

)
= 4xy.

Example 2: Let z = f(x, y) = xy, then

fx = yxy−1,

fy = xy lnx.

Definition 2. The second order partial derivatives are

∂2f

∂x2
= fxx =

∂

∂x

(
∂f

∂x

)
,

∂2f

∂y2
= fyy =

∂

∂y

(
∂f

∂y

)
,

∂2f

∂x ∂y
= fyx =

∂

∂x

(
∂f

∂y

)
,

∂2f

∂y ∂x
= fxy =

∂

∂y

(
∂f

∂x

)
.
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Remarks:

1. fxy = (fx)y.

2. fxy and fyx are called mixed second-order partial derivatives.

3. fxy is not necessarily equal to fyx.

Example 3: Let f(x, y) =

{
xy x2−y2

x2+y2
, x2 + y2 6= 0

0, x2 + y2 = 0.
Show that fxy(0, 0) 6= fyx(0, 0).

Solution: Differentiate f with respect to variable x:

fx(x, y) =

{
y x2−y2
x2+y2

+ xy 2x·2y2
(x2+y2)2

= y x4+4x2y2−y4
(x2+y2)2

, y 6= 0

0, y = 0.

So

fxy(0, 0) = lim
h→0

fx(0, h)− fx(0, 0)

h
= lim

h→0

−h4

h4
= −1.

Differentiate f with respect to variable y:

fy(x, y) =

{
xx2−y2
x2+y2

+ xy −2y·2x
2

(x2+y2)2
= xx4−4x2y2−y4

(x2+y2)2
, x 6= 0

0, x = 0.

So

fyx(0, 0) = lim
h→0

fy(h, 0)− fy(0, 0)

h
= lim

h→0

h4

h4
= 1.

Therefore, fxy(0, 0) 6= fyx(0, 0).

Theorem 1. (The Mixed Derivative Theorem) If f(x, y) and its partial derivatives
fx, fy, fxy, and fyx, are defined throughout an open region containing a point (a, b) and
are all continuous at (a, b), then

fxy(a, b) = fyx(a, b).

Remark: The equality of fxy(a, b) and fyx(a, b) can be proved with hypotheses weaker
than the ones we assumed. For example, it is enough for f , fx and fy to exist in the open
region and for fxy to be continuous at (a, b). Then fyx will exist at (a, b) and equal fxy
at that point.

2 Partial Differential Equations

Partial derivatives occur in partial differential equations that express certain physical
laws. For instance, the partial differential equation

∂2u

∂x2
+

∂2u

∂y2
= 0

is called Laplaces equation after Pierre Laplace (1749-1827). Solutions of this equation
are called harmonic functions; they play a role in problems of heat conduction, fluid flow,
and electric potential
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Example 1. Show that the function u(x, y) = ex sin y is a solution of Laplaces equation.
Solution We first compute the needed second-order partial derivatives:

ux = ex sin y, uy = ex cos y,
uxx = ex sin y, uyy = −ex sin y.

So uxx + uyy = ex sin y − ex sin y = 0.

The wave equation

∂2u

∂t2
= a2

∂2u

∂x2

describes the motion of a waveform, which could be
an ocean wave, a sound wave, a light wave, or a wave
traveling along a vibrating string. For instance, if u(x, t)
represents the displacement of a vibrating violin string
at time t and at a distance x from one end of the string
(as in the figure), then u(x, t) satisfies the wave equation.
Here the constant a depends on the density of the string
and on the tension in the string.

Example 2. Verify that the function u(x, t) = sin(x − at) satisfies the wave equation.
Solution:

ux = cos(x− at), ut = −a cos(x− at),
uxx = − sin(x− at) utt = −a2 sin(x− at) = a2uxx.

So u satisfies the wave equation.

Partial differential equations involving functions of three variables are also very important
in science and engineering. The three-dimensional Laplace equation is

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0

and one place it occurs is in geophysics. If u(x, y, z) represents magnetic field strength at
position (x, y, z), then it satisfies above equation.

3 Exercises

1. Find ∂2w
∂x∂y

if w = xy + ey

y2+1
.
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2. Use implicit differentiation to find ∂z
∂x

and ∂z
∂y

.

(a) x2 + 2y2 + 3z2 = 1

(b) ez = xyz

(c) yz + x ln y = z2

3. Verify that the function u = 1/
√

x2 + y2 + z2 is a solution of the three-dimensional
Laplace equation

uxx + uyy + uzz = 0

4. If f and g are twice differentiable functions of a single variable, show that the
function

u(x, t) = f(x + at) + g(x− at)

is a solution of the wave equation.
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Solutions

1. Find ∂2w
∂x∂y

if w = xy + ey

y2+1
.

∂w
∂x

= y, so ∂2w
∂y ∂x

= 1. Since the conditions of the Mixed Derivative Theorem hold

for all point (x0, y0),
∂2w

∂x ∂y
=

∂2w

∂y ∂x
= 1.

2. Use implicit differentiation to find ∂z
∂x

and ∂z
∂y

.

(a) x2 + 2y2 + 3z2 = 1

Differentiate both sides of the equation with respect to x,

2x + 0 + 6z
∂z

∂x
= 0.

So ∂z
∂x

= − x
3z

if z 6= 0. Similarly, ∂z
∂y

= −2y
3z

if z 6= 0.

(b) ez = xyz

Differentiate both sides of the equation with respect to x,

ez
∂z

∂x
= yz + xy

∂z

∂x

So ∂z
∂x

= yz
ez−xy . Similarly, ∂z

∂y
= xz

ez−xy .

(c) yz + x ln y = z2

Differentiate both sides of the equation with respect to x,

y
∂z

∂x
+ ln y = 2z

∂z

∂x
.

So ∂z
∂x

= ln y
2z−y . Differentiate both sides of the equation with respect to y,

z + y
∂z

∂y
+

x

y
= 2z

∂z

∂y
.

So ∂z
∂y

=
z+ y

x

2z−y .

3. Verify that the function u = 1/
√

x2 + y2 + z2 is a solution of the three-dimensional
Laplace equation uxx + uyy + uzz = 0.

We have

ux =
−x

(x2 + y2 + z2)3/2
,

and

uxx = −(−2x2 + y2 + z2)

(x2 + y2 + z2)5/2
.

Similarly,

uyy = − (x2 − 2y2 + z2)

(x2 + y2 + z2)5/2
.
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and

uyy = − (x2 + y2 − 2z2)

(x2 + y2 + z2)5/2
.

Therefore, uxx + uyy + uzz = 0.

4. If f and g are twice differentiable functions of a single variable, show that the
function

u(x, t) = f(x + at) + g(x− at)

is a solution of the wave equation.

∂u

∂x
= f ′(x + at) + g′(x− at).

∂2u

∂x2
= f ′′(x + at) + g′′(x− at).

∂2u

∂t2
= af ′(x + at)− ag′(x− at).

∂2u

∂t2
= a2f ′′(x + at) + a2g′′(x− at).

Therefore,
∂2u

∂x2
= a2

∂2u

∂t2
,

i.e., u satisfies the wave equation.
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