THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics 2018 SUMMER MATH 2010E Tutorial 6

1 Partial derivatives

Definition 1. The partial derivative of f(x,y) with respect to x at the point (x_0,y_0) is

$$\frac{\partial f}{\partial x}|_{(x_0,y_0)} = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h},$$

and the partial derivative of f(x,y) with respect to y at the point (x_0,y_0) is

$$\frac{\partial f}{\partial y}|_{(x_0,y_0)} = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h},$$

provided the limits exist.

Remarks:

- 1. The expressions $\frac{\partial f}{\partial x}|_{(x_0,y_0)}$, $\frac{\partial f}{\partial x}(x_0,y_0)$, $\frac{d}{dx}f(x,y_0)|_{x=x_0}$, $f_x(x_0,y_0)$ are equivalent.
- 2. We may use the conclusions we learn in the derivative of functions of one variable to compute the partial derivatives by regarding x or y as constant.

Example 1: Let $f(x,y) = x^2 + 2xy^2$, then

$$f_x = \frac{d}{dx} (x^2 + 2xy^2) = 2x + 2y^2,$$

$$f_y = \frac{d}{dy} \left(x^2 + 2xy^2 \right) = 4xy.$$

Example 2: Let $z = f(x, y) = x^y$, then

$$f_x = yx^{y-1},$$

$$f_y = x^y \ln x.$$

Definition 2. The second order partial derivatives are

$$\frac{\partial^2 f}{\partial x^2} = f_{xx} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right),$$

$$\frac{\partial^2 f}{\partial y^2} = f_{yy} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right),$$

$$\frac{\partial^2 f}{\partial x \partial y} = f_{yx} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right),$$

$$\frac{\partial^2 f}{\partial y \partial x} = f_{xy} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right).$$

Remarks:

- 1. $f_{xy} = (f_x)_y$.
- 2. f_{xy} and f_{yx} are called mixed second-order partial derivatives.
- 3. f_{xy} is not necessarily equal to f_{yx} .

Example 3: Let $f(x,y) = \begin{cases} xy\frac{x^2-y^2}{x^2+y^2}, & x^2+y^2 \neq 0 \\ 0, & x^2+y^2 = 0. \end{cases}$ Show that $f_{xy}(0,0) \neq f_{yx}(0,0)$.

Solution: Differentiate f with respect to variable x:

$$f_x(x,y) = \begin{cases} y\frac{x^2 - y^2}{x^2 + y^2} + xy\frac{2x \cdot 2y^2}{(x^2 + y^2)^2} = y\frac{x^4 + 4x^2y^2 - y^4}{(x^2 + y^2)^2}, & y \neq 0\\ 0, & y = 0. \end{cases}$$

So

$$f_{xy}(0,0) = \lim_{h \to 0} \frac{f_x(0,h) - f_x(0,0)}{h} = \lim_{h \to 0} \frac{-h^4}{h^4} = -1.$$

Differentiate f with respect to variable y:

$$f_y(x,y) = \begin{cases} x\frac{x^2 - y^2}{x^2 + y^2} + xy\frac{-2y \cdot 2x^2}{(x^2 + y^2)^2} = x\frac{x^4 - 4x^2y^2 - y^4}{(x^2 + y^2)^2}, & x \neq 0\\ 0, & x = 0. \end{cases}$$

So

$$f_{yx}(0,0) = \lim_{h \to 0} \frac{f_y(h,0) - f_y(0,0)}{h} = \lim_{h \to 0} \frac{h^4}{h^4} = 1.$$

Therefore, $f_{xy}(0,0) \neq f_{yx}(0,0)$.

Theorem 1. (The Mixed Derivative Theorem) If f(x,y) and its partial derivatives f_x , f_y , f_{xy} , and f_{yx} , are defined throughout an open region containing a point (a,b) and are all continuous at (a,b), then

$$f_{xy}(a,b) = f_{yx}(a,b).$$

Remark: The equality of $f_{xy}(a, b)$ and $f_{yx}(a, b)$ can be proved with hypotheses weaker than the ones we assumed. For example, it is enough for f, f_x and f_y to exist in the open region and for f_{xy} to be continuous at (a, b). Then f_{yx} will exist at (a, b) and equal f_{xy} at that point.

2 Partial Differential Equations

Partial derivatives occur in partial differential equations that express certain physical laws. For instance, the partial differential equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

is called *Laplaces equation* after Pierre Laplace (1749-1827). Solutions of this equation are called harmonic functions; they play a role in problems of heat conduction, fluid flow, and electric potential

Example 1. Show that the function $u(x,y) = e^x \sin y$ is a solution of Laplaces equation. Solution We first compute the needed second-order partial derivatives:

$$u_x = e^x \sin y, \quad u_y = e^x \cos y,$$

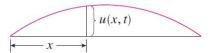
$$u_{xx} = e^x \sin y, \quad u_{yy} = -e^x \sin y.$$

So $u_{xx} + u_{yy} = e^x \sin y - e^x \sin y = 0$.

The wave equation

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$$

describes the motion of a waveform, which could be an ocean wave, a sound wave, a light wave, or a wave traveling along a vibrating string. For instance, if u(x,t) represents the displacement of a vibrating violin string at time t and at a distance x from one end of the string (as in the figure), then u(x,t) satisfies the wave equation. Here the constant a depends on the density of the string and on the tension in the string.



Example 2. Verify that the function $u(x,t) = \sin(x-at)$ satisfies the wave equation. Solution:

$$u_x = \cos(x - at),$$
 $u_t = -a\cos(x - at),$
 $u_{xx} = -\sin(x - at)$ $u_{tt} = -a^2\sin(x - at) = a^2u_{xx}.$

So u satisfies the wave equation.

Partial differential equations involving functions of three variables are also very important in science and engineering. The three-dimensional Laplace equation is

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

and one place it occurs is in geophysics. If u(x, y, z) represents magnetic field strength at position (x, y, z), then it satisfies above equation.

3

3 Exercises

1. Find
$$\frac{\partial^2 w}{\partial x \partial y}$$
 if $w = xy + \frac{e^y}{y^2 + 1}$.

- 2. Use implicit differentiation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
 - (a) $x^2 + 2y^2 + 3z^2 = 1$
 - (b) $e^z = xyz$
 - (c) $yz + x \ln y = z^2$

3. Verify that the function $u=1/\sqrt{x^2+y^2+z^2}$ is a solution of the three-dimensional Laplace equation

$$u_{xx} + u_{yy} + u_{zz} = 0$$

4. If f and g are twice differentiable functions of a single variable, show that the function

$$u(x,t) = f(x+at) + g(x-at)$$

is a solution of the wave equation.

Solutions

1. Find $\frac{\partial^2 w}{\partial x \partial y}$ if $w = xy + \frac{e^y}{y^2 + 1}$.

 $\frac{\partial w}{\partial x} = y$, so $\frac{\partial^2 w}{\partial y \partial x} = 1$. Since the conditions of the Mixed Derivative Theorem hold for all point (x_0, y_0) ,

$$\frac{\partial^2 w}{\partial x \, \partial y} = \frac{\partial^2 w}{\partial y \, \partial x} = 1.$$

2. Use implicit differentiation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

(a)
$$x^2 + 2y^2 + 3z^2 = 1$$

Differentiate both sides of the equation with respect to x,

$$2x + 0 + 6z \frac{\partial z}{\partial x} = 0.$$

So $\frac{\partial z}{\partial x} = -\frac{x}{3z}$ if $z \neq 0$. Similarly, $\frac{\partial z}{\partial y} = -\frac{2y}{3z}$ if $z \neq 0$.

(b)
$$e^z = xyz$$

Differentiate both sides of the equation with respect to x,

$$e^z \frac{\partial z}{\partial x} = yz + xy \frac{\partial z}{\partial x}$$

So $\frac{\partial z}{\partial x} = \frac{yz}{e^z - xy}$. Similarly, $\frac{\partial z}{\partial y} = \frac{xz}{e^z - xy}$.

(c)
$$yz + x \ln y = z^2$$

Differentiate both sides of the equation with respect to x,

$$y\frac{\partial z}{\partial x} + \ln y = 2z\frac{\partial z}{\partial x}.$$

So $\frac{\partial z}{\partial x} = \frac{\ln y}{2z-y}$. Differentiate both sides of the equation with respect to y,

$$z + y\frac{\partial z}{\partial y} + \frac{x}{y} = 2z\frac{\partial z}{\partial y}.$$

So
$$\frac{\partial z}{\partial y} = \frac{z + \frac{y}{x}}{2z - y}$$
.

3. Verify that the function $u = 1/\sqrt{x^2 + y^2 + z^2}$ is a solution of the three-dimensional Laplace equation $u_{xx} + u_{yy} + u_{zz} = 0$.

We have

$$u_x = \frac{-x}{(x^2 + y^2 + z^2)^{3/2}},$$

and

$$u_{xx} = -\frac{(-2x^2 + y^2 + z^2)}{(x^2 + y^2 + z^2)^{5/2}}.$$

Similarly,

$$u_{yy} = -\frac{(x^2 - 2y^2 + z^2)}{(x^2 + y^2 + z^2)^{5/2}}.$$

and

$$u_{yy} = -\frac{(x^2 + y^2 - 2z^2)}{(x^2 + y^2 + z^2)^{5/2}}.$$

Therefore, $u_{xx} + u_{yy} + u_{zz} = 0$.

4. If f and g are twice differentiable functions of a single variable, show that the function

$$u(x,t) = f(x+at) + g(x-at)$$

is a solution of the wave equation.

$$\frac{\partial u}{\partial x} = f'(x+at) + g'(x-at).$$

$$\frac{\partial^2 u}{\partial x^2} = f''(x+at) + g''(x-at).$$

$$\frac{\partial^2 u}{\partial t^2} = af'(x+at) - ag'(x-at).$$

$$\frac{\partial^2 u}{\partial t^2} = a^2 f''(x+at) + a^2 g''(x-at).$$

Therefore,

$$\frac{\partial^2 u}{\partial x^2} = a^2 \frac{\partial^2 u}{\partial t^2},$$

i.e., u satisfies the wave equation.