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1 Partial derivatives

Definition 1. The partial derivative of f(x,y) with respect to x at the point (xo,yo) is

af | — lim f(xo + h,yo) — [ (o, o)
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and the partial derivative of f(x,y) with respect to y at the point (xo,yo) is
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provided the limits exist.
Remarks:

1. The expressions % ‘(mo,yo)v %(x0>y0)7 %f(m,yo) |x::1:o> fx(anyO) are equivalent.

2. We may use the conclusions we learn in the derivative of functions of one variable
to compute the partial derivatives by regarding x or y as constant.

Example 1: Let f(z,y) = 2? + 2xy?, then

fo= 4 (2 + 22y?) = 22 + 247,

dx
d o 2
fy:d—y(:v + 2y ) = 4xy.
Example 2: Let z = f(x,y) = a¥, then
fx = yl,y—l’

fy=2Inx.

Definition 2. The second order partial derivatives are
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Remarks:
L foy = (F),
2. fuy and f,, are called mixed second-order partial derivatives.
3. fzy is not necessarily equal to f,.

xy%, w2+ y?#£0

0, 22 +y? =0.
Solution: Differentiate f with respect to variable x:

Example 3: Let f(z,y) = Show that f;,(0,0) # f,.(0,0).

vy 22202 attda?y’—yt
fm(.']j, y) = yac2+y2 + 'Ty (I2+y2)2 — y (x2+y2)2 , y # O
0, )
N f2(0,h) — f.(0,0) A
Fa0,0) = iy = = iy g =

Differentiate f with respect to variable y:

Fola,y) = v YTy = v, T A0
e 0, z = 0.
So
7 fy(hv 0) — fy(0,0) _ 1 h' —
L L N T

Therefore, f,,(0,0) # f,2(0,0).

Theorem 1. (The Mized Derivative Theorem) If f(x,y) and its partial derivatives
fo, fys foy, and fye, are defined throughout an open region containing a point (a,b) and
are all continuous at (a,b), then

f$y<a’7 b) = fyff(av b)

Remark: The equality of f,,(a,b) and f,,(a,b) can be proved with hypotheses weaker
than the ones we assumed. For example, it is enough for f, f, and f, to exist in the open
region and for f,, to be continuous at (a,b). Then f,, will exist at (a,b) and equal f,,
at that point.

2 Partial Differential Equations

Partial derivatives occur in partial differential equations that express certain physical
laws. For instance, the partial differential equation

*u  O%*u

922 T =Y

is called Laplaces equation after Pierre Laplace (1749-1827). Solutions of this equation
are called harmonic functions; they play a role in problems of heat conduction, fluid flow,
and electric potential



Example 1. Show that the function u(x,y) = e*siny is a solution of Laplaces equation.
Solution We first compute the needed second-order partial derivatives:

Uy, = e*siny,  u, = e’ cosy,
Upy = € SINY, Uy, = —€*siny.

SO Ugy + Uyy = €7 siny — e siny = 0.

The wave equation

*u 0%

—_— = q"—
ot? 0x?
describes the motion of a waveform, which could be

an ocean wave, a sound wave, a light wave, or a wave T
traveling along a vibrating string. For instance, if u(x,t) [

represents the displacement of a vibrating violin string e x —
at time ¢ and at a distance z from one end of the string

(as in the figure), then u(x,t) satisfies the wave equation.

Here the constant a depends on the density of the string

and on the tension in the string.

Example 2. Verify that the function u(z,t) = sin(z — at) satisfies the wave equation.

Solution:
u, = cos(x — at), uy = —acos(x — at),
Upe = —sin(x — at) uy = —a?sin(z — at) = a*uy,.

So u satisfies the wave equation.

Partial differential equations involving functions of three variables are also very important
in science and engineering. The three-dimensional Laplace equation is
0?u N 0?u N Pu 0
ox2  Oy? 022

and one place it occurs is in geophysics. If u(z,y, z) represents magnetic field strength at
position (x,y, z), then it satisfies above equation.

3 Exercises

eV
Y41

1. Find aa;é”y if w=uxzy+



2. Use implicit differentiation to find % and g—;.

(a) 2 +2y2 +322 =1
(b) e* = xyz

¢) yz +xlny = 2?
(¢) v y

3. Verify that the function u = 1/4/22 + y? + 22 is a solution of the three-dimensional
Laplace equation
Ugg + Uyy + Uz, = 0

4. If f and g are twice differentiable functions of a single variable, show that the
function
u(x,t) = f(z + at) + g(x — at)

is a solution of the wave equation.



Solutions

eY

1. Find 2% if w =2y + 5.

?‘9_1; =, SO 86;3; = 1. Since the conditions of the Mixed Derivative Theorem hold

for all point (zo, ¥o),
0%w 0*w

Ox Oy B Oy Ox =1

2. Use implicit differentiation to find % and g—;.

(a) 22 +2y2+322 =1
Differentiate both sides of the equation with respect to z,

2x+0+6z%:0.
ox

So 92 = —£ if » £ 0. Similarly, 2 = —2/ if 2 £ 0.

(b) e* = xyz
Differentiate both sides of the equation with respect to z,
0z

=Yz + 1Yy~

ez—z
ox ox

Tz
e*—zxy’

9z _ _yz imi 0z _
So 5 = Similarly, 5 =

e*—zxy’
(c) yz+xlny = 22
Differentiate both sides of the equation with respect to z,

0z Tl 5 0z
— +Iny=2z—.
Y ou 4 ox
So % = ;Z“f’y. Differentiate both sides of the equation with respect to y,
n 0z N T _, 0z
Z24+y—+— =2z2—
9y y Ay
Oz __ Z"‘%
So (9_y = 2y

3. Verify that the function u = 1/4/22 + y? + 22 is a solution of the three-dimensional
Laplace equation g, + ty, + .. = 0.

We have
B —T
Uz = (x2 + y2 + 22)3/2’
and
e (3:2 + y2 + 22)5/2 )
Similarly,

(22 = 29 + )
Uyy = _(x2 T2 4 22)5/2
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and
(22 + y? — 22?)

Uyy = (m2—|—y2+22)5/2'

Therefore, gy + tyy + ., = 0.

. If f and g are twice differentiable functions of a single variable, show that the
function
u(x,t) = f(z + at) + g(z — at)

is a solution of the wave equation.

0
a—z = f'(x +at) + ¢'(z — at).
o2
a—;; = f"(z + at) + ¢"(x — at).
2
% =af'(x+ at) — ag'(x — at).
2
% = a*f"(z + at) + a*g"(z — at).
Therefore,
u_ o
022~ " o2

i.e., u satisfies the wave equation.



