THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics 2018 SUMMER MATH2010 Tutorial 3

Definition 1. (*Eigenvalue*/*Eigenvector of a matrix*) Suppose $A \in M^{n \times n}(\mathbb{R})$ is an $n \times n$ matrix. If there exist a real number λ and a non-zero vector $\vec{v} \in \mathbb{R}^n$ satisfying

$$A\vec{v} = \lambda\vec{v},$$

then λ is called the eigenvalue of A and \vec{v} is called the eigenvector of A corresponding to the eigenvalue λ .

Idea: To find the eigenvalue and eigenvector, it is equivalent to show the existence of λ and non-zero \vec{v} satisfying

$$(A - \lambda I)\vec{v} = 0.$$

If the above linear system of equation $(A - \lambda I)\vec{v} = 0$ has a unique solution, then \vec{v} must be zero. Hence the condition of \vec{v} being non-zero is equivalent to the linear system of equation $(A - \lambda I)\vec{v} = 0$ having infinitely many solutions, that is, $\det(A - \lambda I) = 0$.

Now we sum up how to find the eigenvalue and eigenvector of A:

- (a) Let $\lambda \in \mathbb{R}$ and solve the equation $\det(A \lambda I) = 0$.
- (b) If such λ exists, find the vectors \vec{v} satisfying $(A \lambda I)\vec{v} = 0$ by Gaussian elimination or else. There may be infinitely many choices of \vec{v} , just choose one that is convenient with you.

Diagonalization of a matrix

Definition 2. (Diagonal matrix) Suppose $A \in M^{n \times n}(\mathbb{R})$ is a $n \times n$ matrix. It is called a diagonal matrix if all its entries except the diagonal entries are all zero, that is,

$$A_{ij} = 0$$
 for all $1 \leq i, j \leq n$ and $i \neq j$

Definition 3. (Diagonalizable matrix) $A \in M^{n \times n}(\mathbb{R})$ is diagonalizable if and only if there exists an invertible matrix P such that $D = P^{-1}AP$ is a diagonal matrix.

Remark: Not every matrix is diagonalizable!

Theorem 1. If $A \in M^{n \times n}(\mathbb{R})$ is symmetric $(A_{ij} = A_{ji})$, then there is an orthogonal matrix Q with $Q^T Q = QQ^T = I$ such that $Q^T A Q$ is diagonal.

Idea: We suppose there are diagonal matrix D and invertible matrix P such that $D = P^{-1}AP$, then

$$D = P^{-1}AP$$
$$PD = AP$$
$$(d_{11}\vec{p_1}, d_{22}\vec{p_2}, ..., d_{nn}\vec{p_n}) = (A\vec{p_1}, A\vec{p_2}, ..., A\vec{p_n})$$

where $\vec{p_i}$ are the column vectors of P. We see that $d_{ii}\vec{p_i} = A\vec{p_i}$, which means d_{ii} are the eigenvalues of A and its corresponding eigenvector is $\vec{p_i}$. Hence we can use the eigenvalues and eigenvectors to diagonalize matrix A with the following steps: (In general, this method may not be applied if all the eigenvalues are not distinct, but it is enough for 2×2 matrix.)

- (a) Find all the distinct eigenvalues λ_i and all its corresponding eigenvectors v_i .
- (b) Then the required P is composed with all the eigenvectors v_i as its column vectors and D is composed with diagonal entries $d_{ii} = \lambda_i$.

Application: Identify the type of graph of the quadratic equation:

$$144x^2 + 120xy + 25y^2 - 247x - 286y = 0$$

Solution:

Step 1: Express the second order term in quadratic form We see that $144x^2 + 120xy + 25y^2 = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 144 & 60 \\ 60 & 25 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$. Step 2: Diagonalize the matrix $A = \begin{pmatrix} 144 & 60 \\ 60 & 25 \end{pmatrix}$.

Find all eigenvalues and eigenvectors:

Let $\lambda \in \mathbb{R}$,

$$det(A - \lambda I) = 0$$

$$\begin{vmatrix} 144 - \lambda & 60 \\ 60 & 25 - \lambda \end{vmatrix} = 0$$

$$\lambda^2 - 169\lambda = 0$$

$$\lambda = 0 \text{ or } 169$$

Let $\lambda_1 = 0$ and $\vec{v_1} = (x, y)$, $(A - \lambda_1 I)\vec{v_1} = A\vec{v_1} = 0$ gives 12x + 5y = 0, we can choose $\vec{v_1} = (-5, 12)$.

Let $\lambda_2 = 169$ and $\vec{v_2} = (x, y)$, $(A - \lambda_2 I)\vec{v} = 0$ gives -5x + 12y = 0, we can choose $\vec{v_2} = (12, 5)$. **Diagonalize:**

Let
$$P = \begin{pmatrix} -5 & 12 \\ 12 & 5 \end{pmatrix}$$
, then $P^{-1} = \frac{1}{169} \begin{pmatrix} -5 & 12 \\ 12 & 5 \end{pmatrix}$
Thus, $\begin{pmatrix} 144 & 60 \\ 60 & 25 \end{pmatrix} = \begin{pmatrix} -5 & 12 \\ 12 & 5 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 169 \end{pmatrix} \frac{1}{169} \begin{pmatrix} -5 & 12 \\ 12 & 5 \end{pmatrix}$
We have

$$144x^{2} + 120xy + 25y^{2} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -5 & 12 \\ 12 & 5 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 169 \end{pmatrix} \frac{1}{169} \begin{pmatrix} -5 & 12 \\ 12 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
$$= \begin{pmatrix} -5x + 12y & 12x + 5y \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 169 \end{pmatrix} \frac{1}{169} \begin{pmatrix} -5x + 12y \\ 12x + 5y \end{pmatrix}$$

Step 3: Change of variables:

Let
$$u = \frac{1}{13}(-5x + 12y)$$
 and $v = \frac{1}{13}(12x + 5y)$, we have $\begin{pmatrix} u \\ v \end{pmatrix} = \frac{1}{13}\begin{pmatrix} -5 & 12 \\ 12 & 5 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}$
and $\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{13}\begin{pmatrix} -5 & 12 \\ 12 & 5 \end{pmatrix}\begin{pmatrix} u \\ v \end{pmatrix}$
 $144x^2 + 120xy + 25y^2 - 247x - 286y = \begin{pmatrix} u & v \end{pmatrix}\begin{pmatrix} 0 & 0 \\ 0 & 169 \end{pmatrix}\begin{pmatrix} u \\ v \end{pmatrix} - \begin{pmatrix} 247 & 286 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}$
 $= 169v^2 - \frac{1}{13}\begin{pmatrix} 247 & 286 \end{pmatrix}\begin{pmatrix} -5 & 12 \\ 12 & 5 \end{pmatrix}\begin{pmatrix} u \\ v \end{pmatrix}$
 $= 169v^2 - 169u - 338v$
 $= 169((v - 1)^2 - 1 - u)$

Thus, $169((v-1)^2 - 1 - u) = 0 \Rightarrow u = (v-1)^2 - 1$ is a parabola (tilted).

Exercise:

Identify the type of graph of the quadratic equation: $-x^2 + 4xy + 2y^2 + \frac{14x}{\sqrt{5}} + \frac{8y}{\sqrt{5}} = 0$

Solution:

We see that $-x^2 + 4xy + 2y^2 = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$. First we diagonalize the matrix $A = \begin{pmatrix} -1 & 2 \\ 2 & 2 \end{pmatrix}$. Let $\lambda \in \mathbb{R}$,

$$det(A - \lambda I) = 0$$
$$\begin{vmatrix} -1 - \lambda & 2 \\ 2 & 2 - \lambda \end{vmatrix} = 0$$
$$\lambda^2 - \lambda - 6 = 0$$
$$\lambda = 3 \text{ or } -2$$

Let $\lambda_1 = 3$ and $\vec{v_1} = (x, y)$, $(A - \lambda_1 I)\vec{v_1} = 0$ gives $\vec{v_1} = (1, 2)$.

Let
$$\lambda_2 = -2$$
 and $\vec{v_2} = (x, y)$,
 $(A - \lambda_2 I)\vec{v} = 0$ gives $\vec{v_2} = (-2, 1)$.
Let $P = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}$, then $P^{-1} = \frac{1}{5}\begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$
Thus, $\begin{pmatrix} -1 & 2 \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}\begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}\frac{1}{5}\begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$
We have

$$-x^{2} + 4xy + 2y^{2} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix} \frac{1}{5} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
$$= \begin{pmatrix} x + 2y & -2x + y \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix} \frac{1}{5} \begin{pmatrix} x + 2y \\ -2x + y \end{pmatrix}$$

Let $u = \frac{1}{\sqrt{5}}(x+2y)$ and $v = \frac{1}{\sqrt{5}}(-2x+y)$, we have $\begin{pmatrix} u \\ v \end{pmatrix} = \frac{1}{\sqrt{5}}\begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}$ and $\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{\sqrt{5}}\begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}\begin{pmatrix} u \\ v \end{pmatrix}$

$$x^{2} + 4xy + 2y^{2} + \frac{14x}{\sqrt{5}} + \frac{8x}{\sqrt{5}} = \begin{pmatrix} u & v \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} + \begin{pmatrix} \frac{14x}{\sqrt{5}} & \frac{8x}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
$$= 3u^{2} - 2v^{2} + \begin{pmatrix} \frac{14x}{\sqrt{5}} & \frac{8x}{\sqrt{5}} \end{pmatrix} \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$$

$$= 3u^{2} - 2v^{2} + (6 - 4) \begin{pmatrix} u \\ v \end{pmatrix}$$
$$= 3u^{2} - 2v^{2} + 6u - 4v$$
$$= 3(u - 1)^{2} - 2(v - 1)^{2} - 1$$

Thus, $3(u-1)^2 - 2(v-1)^2 - 1 = 0$ is a hyperbolic.