THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics 2018 Summer MATH 2010 Tutorial 1

Definition 1. (The length of a vector) If $\vec{v} = (v_1, v_2, ..., v_n) \in \mathbb{R}^n$, then its magnitude or length (2-norm) is defined to be

$$\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

Remark: Someone may use the notation $|\vec{v}|$ instead of $||\vec{v}||$.

Definition 2. (Unit vector) A vector \vec{v} of length 1 is called a unit vector

Definition 3. (Dot product) Suppose $\vec{u} = (u_1, u_2, ..., u_n) \in \mathbb{R}^n$ and $\vec{v} = (v_1, v_2, ..., v_n) \in \mathbb{R}^n$, then the dot product $\vec{u} \cdot \vec{v}$ of \vec{u} and \vec{v} is the scalar

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

Theorem 1. Let the angle $0 \le \theta \le \pi$ between two nonzero vectors $\vec{u} = (u_1, u_2, u_3)$ and $\vec{v} = (v_1, v_2, v_3)$ in \mathbb{R}^3 . Then θ is given by

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\| \|\vec{u}\|}$$

Definition 4. (Orthogonal vectors) \vec{u} and \vec{v} are orthogonal if $\vec{u} \cdot \vec{v} = 0$.

Remark : In \mathbb{R}^3 , we see that the angle θ between \vec{u} and \vec{v} equals to $\pi/2$ by Theorem 1 iff $\vec{u} \cdot \vec{v} = 0$.

Proposition 1. (Properties of the Dot Product)

If \vec{u} , \vec{v} , and \vec{w} are any vectors and c is a scalar, then

- (a) $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$,
- (b) $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$,
- $(c) (c\vec{u}) \cdot \vec{v} = c(\vec{u} \cdot \vec{v}),$
- $(\vec{d}) ||\vec{u}||^2 = \vec{u} \cdot \vec{u}$

Definition 5. (Vector projection) The vector projection of \vec{u} onto \vec{v} is the vector

$$proj_v u = \left(\frac{\vec{u} \cdot \vec{v}}{\|v\|^2}\right) v$$

Definition 6. (Cross product) Suppose \vec{u} , $\vec{v} \in \mathbb{R}^3$. The cross product $\vec{u} \times \vec{v}$ is the vector

$$\vec{u} \times \vec{v} = (\|u\| \|v\| \sin \theta) \vec{n}$$

where θ is the angle between \vec{u} and \vec{v} , \vec{n} is the unit vector orthogonal to the plane containing \vec{u} and \vec{v} .

The direction of \vec{n} is determined by right hand rule.

Remark: $\vec{u} \times \vec{v} \neq \vec{v} \times \vec{u}$! The direction of \vec{n} is reversed.

Proposition 2. (Properties of the Cross Product)

If \vec{u} , \vec{v} , and \vec{w} are any vectors and r, s are a scalars, then

- (a) $(r\vec{u}) \times (s\vec{v}) = (rs)(\vec{u} \times \vec{v}),$
- (b) $\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}$,
- (c) $\vec{u} \times \vec{v} = -\vec{v} \times \vec{u}$,
- (d) $\vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w})\vec{v} (\vec{u} \cdot \vec{v})\vec{w}$

Calculating the Cross Product as a Determinant:

If $\vec{u} = (u_1, u_2, u_3) = u_1 \vec{i} + u_2 \vec{j} + u_3 \vec{k}$ and $\vec{v} = (v_1, v_2, v_3) = v_1 \vec{i} + v_2 \vec{j} + v_3 \vec{k}$, then

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = + \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \vec{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \vec{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \vec{k}$$

Theorem 2. (Cauchy – Schwarz inequality) Suppose \vec{u} , $\vec{v} \in \mathbb{R}^n$, then

$$|\vec{u}\cdot\vec{v}| \leq \|\vec{u}\| \|\vec{v}\|$$

The equality holds iff $\vec{u} = k\vec{v}$ for some $k \in \mathbb{R}$

We give a algebraical proof here.

Proof. Suppose $\vec{v} \neq 0$. otherwise the theorem is trivial. Let $\lambda \in \mathbb{R}$,

$$0 \le \|\vec{u} - \lambda \vec{v}\|^2$$

= $\vec{u} \cdot \vec{u} - 2\lambda \vec{u} \cdot \vec{v} + \lambda^2 \vec{v} \cdot \vec{v}$

If we set
$$\lambda = \frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|^2}$$
,

$$0 \le \vec{u} \cdot \vec{u} - 2 \frac{(\vec{u} \cdot \vec{v})^2}{\|\vec{v}\|^2} + \frac{(\vec{u} \cdot \vec{v})^2}{\|\vec{v}\|^2}$$
$$= \|\vec{u}\|^2 - \frac{(\vec{u} \cdot \vec{v})^2}{\|\vec{v}\|^2}$$

Theorem 3. (Triangle inequality) Suppose \vec{u} , $\vec{v} \in \mathbb{R}^n$, then

$$\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$$

The equality holds iff $\vec{u} = k\vec{v}$ for some $k \ge 0$

We give a algebraical proof here.

Proof.

$$\|\vec{u} + \vec{v}\|^2 = \sum_{i=1}^{n} |u_i + v_i|^2$$

$$= \sum_{i=1}^{n} |u_i|^2 + 2u_i v_i + |v_i|^2$$

$$= \|\vec{u}\|^2 + 2\vec{u} \cdot \vec{v} + \|\vec{v}\|^2$$

$$\leq \|\vec{u}\|^2 + 2\|\vec{u}\| \|\vec{v}\| + \|\vec{v}\|^2$$

$$= (\|\vec{u}\| + \|\vec{v}\|)^2$$

Exercise:

1. Prove Theorem 1.

2. Prove Theorem 2 geometrically.

3. Prove Theorem 3 geometrically.

4. Given $\vec{v} = (2, 10, -11)$ and $\vec{u} = (2, 2, 1)$, find the vector projection of \vec{u} onto \vec{v} .

5. Given $\vec{u}=(2,2,1)$ and $\vec{v}=(2,10,-11)$, find the cross product $\vec{u}\times\vec{v}$ and the angle between \vec{u} and \vec{v} .

Solution:

1.

By cosines law,

$$\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\|\vec{u}\| \|\vec{v}\| \cos \theta$$

$$\sum_{i=1}^{n} |u_i - v_i|^2 = \sum_{i=1}^{n} |u_i|^2 + |v_i|^2 - 2\|u\| \|v\| \cos \theta$$

$$\sum_{i=1}^{n} |u_i|^2 - 2u_i v_i + |v_i|^2 = \sum_{i=1}^{n} |u_i|^2 + |v_i|^2 - 2\|u\| \|v\| \cos \theta$$

$$\sum_{i=1}^{n} -2u_i v_i = -2\|u\| \|v\| \cos \theta$$

$$\vec{u} \cdot \vec{v} = \|u\| \|v\| \cos \theta$$

2. It follows from Theorem 1, or suppose \vec{u} and \vec{v} are non-zero, then we project \vec{u} on \vec{v} ,

$$proj_v u = \left(\frac{\vec{u} \cdot \vec{v}}{\|v\|^2}\right) \vec{v}$$

By setting $\vec{w} = \vec{u} - proj_v u$, by Pythagorean theorem

$$\|\vec{u}\|^2 = \|proj_v u\|^2 + \|w\|^2 = \left| \left(\frac{\vec{u} \cdot \vec{v}}{\|v\|^2} \right) \vec{v} \right|^2 + \|w\|^2 \ge \left| \left(\frac{\vec{u} \cdot \vec{v}}{\|v\|} \right) \right|^2$$

3. It follows from Theorem 2.

1

$$proj_v u = \left(\frac{\vec{u} \cdot \vec{v}}{\|v\|^2}\right) \vec{v} = \frac{13}{225}(2, 10, -11)$$

5.

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 2 & 1 \\ 2 & 10 & -11 \end{vmatrix} = + \begin{vmatrix} 2 & 1 \\ 10 & -11 \end{vmatrix} \vec{i} - \begin{vmatrix} 2 & 1 \\ 2 & -11 \end{vmatrix} \vec{j} + \begin{vmatrix} 2 & 2 \\ 2 & 10 \end{vmatrix} \vec{k} = -32\vec{i} + 24\vec{j} + 16\vec{k}$$

$$|\vec{u} \times \vec{v}| = ||\vec{u}|| ||\vec{v}|| \sin \theta$$
$$8\sqrt{29} = 45 \sin \theta$$

Since
$$\vec{u} \cdot \vec{v} = 13 > 0 \sin \theta = \frac{8\sqrt{29}}{45}$$
 and $0 < \theta < \pi/2$