
MATH2010E LECTURE 8: EXTREME VALUES II AND

TAYLOR’S FORMULA

1. Level surfaces ,gradient and Lagrange multipliers

We have showed in the last lecture that, when we have a function f(x, y) under
a constraint {g(x, y) = 0}, we can apply the theorem of Lagrange multipliers to
obtain its local extrema. This theorem also holds for functions of 3-(or n-)variable.

Theorem 1.1. The value of f(x, y, z) subject to the surface C = {g(x, y, z) = 0}
attains local extrema at p only if there exists λ > 0 such that ∇f(p) = λ∇g(p).

The proof for this theorem follows the same argument as we showed in 2-
dimensional version.

Pic. 1

For 3-variable functions, one can consider a more complicated problem. Suppose
in this case we have a function f : R3 → R subject to a curve C determined by
the intersection of two surfaces {g1(x, y, z) = 0} and {g2(x, y, z) = 0}. Let p ∈ C.
Then the tangent vector, ~v, of the curve C at p will be perpendicular to the two
normal vectors corresponding to these two surfaces. That is to say,

~v ⊥ ∇g1(p), ~v ⊥ ∇g2(p).(1.1)

Here we assume that ∇g1 and ∇g2 are not parallel along the curve C. Under this
setting, (1.1) implies that every vector ~w ∈ R3 perpendicular to ~v can be written
as

~w = λ∇g1(p) + µ∇g2(p)(1.2)

for some λ, µ ∈ R.

Suppose that C attains it local maximum at point p. Then we will have C is in
{f(x, y, z) ≤ f(p)} near the point p with p on the boundary of this set. Therefore,
the tangent vector ~v of the curve C at point p must be on the tangent plane of

1



2 MATH2010E LECTURE 8: EXTREME VALUES II AND TAYLOR’S FORMULA

Sf(p) = {f(x, y, z) = f(p)}. So ~v ⊥ ∇f(p). By (1.2), we have

∇f(p) = λ∇g1(p) + µ∇g2(p)(1.3)

for some λ, µ ∈ R.

Theorem 1.2. The value of f subject to {g1(x, y, z) = 0}∩{g2(x, y, z) = 0} attains
its local extrema at p only if

∇f(p) = λ∇g1(p) + µ∇g2(p)

for some λ, µ ∈ R.

Example. Let f(x, y, z) = x2 + y2 + z2 be the function subject to {g1(x, y, z) =
x2 + y2 − 1 = 0} ∩ {g2(x, y, z) = x+ y+ z − 1 = 0}. We can find the local extrema
by solving

∇f(p) = λ∇g1(p) + µ∇g2(p),(1.4)

g1(p) = 0(1.5)

g2(p) = 0.(1.6)

In this case, we will have

2x = 2λx+ µ;(1.7)

2y = 2λy + µ;(1.8)

2z = µ;(1.9)

x2 + y2 − 1 = 0;(1.10)

x+ y + z − 1 = 0.(1.11)

We have the following solutions:

(λ, µ, x, y, z) = (1, 0, 1, 0, 0) or(1.12)
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We can check that f(1, 0, 0) and f(0, 1, 0) are local minimums and f
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are local maximums.

2. Taylor’s formula for two-variable functions

Recall that, a function f : Ω→ R is called smooth if and only if f is differentiable
up to any order. If f is a smooth, one-variable function, then we can write down
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its Taylor’s formula

f(a) +
df

dt
(a)(x− a) +

1

2!

d2f

dt2
(a)(x− a)2 + · · ·+ 1

n!

dnf

dtn
(a)(x− a)n + · · ·(2.1)

=

∞∑
n=0

1

n!

( d
dt

)n
f(a)(x− a)n.

This series will converge to f(x) if we have control on its derivatives.

For f be a two-variable function, we want to derive a similar formula. To achieve
this goal, one can start with the following setting: Let (a1, a2) ∈ R2. For any
(x, y) ∈ R2, we define ~v = (x− a1, y − a2). Denote by (x− a1) v1 and (y − a2) v2.
One can write

g(t) = f(a1 + tv1, a2 + tv2)(2.2)

as a one-variable function. Of course, we will have the Taylor’s formula for g by
(2.1):

∞∑
n=0

1

n!

( d
dt

)n
g(0)tn.(2.3)

By chain rule, we can write

d

dt
= v1

∂

∂x
+ v2

∂

∂y
(2.4)

So ( d
dt

)n
=
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∂
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∂
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)n
(2.5)

= vn1 ∂
n
x + Cn

1 v
(n−1)
1 v2∂

(n−1)
x ∂y + Cn

2 v
(n−2)
1 v2

2∂
(n−2)
x ∂2

y + · · ·+ vn2 ∂
n
y

=

n∑
k=0

Cn−k
k v

(n−k)
1 vk2∂

(n−k)
x ∂ky

where Cn
k := n!

k!(n−k)! .

Now recall that v1 = (x− a1) and v2 = (y − a2). So (2.3) can be written as

∞∑
n=0

1

n!

n∑
k=0

Cn−k
k v

(n−k)
1 vk2

(
∂(n−k)
x ∂kyg

)
(0)tn(2.6)

=

∞∑
n=0

n∑
k=0

1

(n− k)!k!

(
∂(n−k)
x ∂kyg

)
(0)(x− a1)n−k(y − a2)ktn.

Suppose that the partial derivatives for f can be controlled, then g(t) equals the
RHS of (2.6). When t = 1, we have g(1) = f(x, y). So under this setting, we obtain
the Taylor’s Formula for two-variable functions.

f(x, y) ∼
∞∑

n=0

n∑
k=0

1

(n− k)!k!

(
∂(n−k)
x ∂kyg

)
(0)(x− a1)n−k(y − a2)k(2.7)
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To define precisely the controls for its derivatives, we denote

En(x, y) :=
1

n!
max

(x,y)∈Ω
{|∂nxf |, |∂(n−1)

x ∂yf |, ..., |∂ny f |}(|x− a1|2 + |y − a2|2)
n
2 .(2.8)

Then

Theorem 2.1. We have

f(x, y) =

∞∑
n=0

n∑
k=0

1

(n− k)!k!

(
∂(n−k)
x ∂kyg

)
(0)(x− a1)n−k(y − a2)k(2.9)

if limn→∞En(x, y) = 0 uniformly.

We will discuss this theorem in the next lecture.


