MATH2010E LECTURE 8: EXTREME VALUES II AND
TAYLOR’S FORMULA

1. LEVEL SURFACES ,GRADIENT AND LAGRANGE MULTIPLIERS

We have showed in the last lecture that, when we have a function f(z,y) under
a constraint {g(z,y) = 0}, we can apply the theorem of Lagrange multipliers to
obtain its local extrema. This theorem also holds for functions of 3-(or n-)variable.

Theorem 1.1. The value of f(x,y,z) subject to the surface C = {g(z,y,z) = 0}
attains local extrema at p only if there exists A > 0 such that V f(p) = AVg(p).

The proof for this theorem follows the same argument as we showed in 2-
dimensional version.

Pic. 1

For 3-variable functions, one can consider a more complicated problem. Suppose
in this case we have a function f : R®> — R subject to a curve C' determined by
the intersection of two surfaces {g1(z,y,z) = 0} and {g2(z,y,2) = 0}. Let p € C.
Then the tangent vector, ¥, of the curve C at p will be perpendicular to the two
normal vectors corresponding to these two surfaces. That is to say,

(1.1) UL Vagi(p), v L Vga(p).

Here we assume that Vg; and Vg are not parallel along the curve C. Under this
setting, (1.1) implies that every vector w € R? perpendicular to ¥ can be written
as

(1.2) W= AVgi(p) + nVga(p)

for some A, u € R.

Suppose that C attains it local maximum at point p. Then we will have C is in
{f(z,y,2) < f(p)} near the point p with p on the boundary of this set. Therefore,
the tangent vector ¥ of the curve C' at point p must be on the tangent plane of
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Sty ={f(z,y,2) = f(p)}. So ¥ L Vf(p). By (1.2), we have

(1.3) Vf(p) =AVag1(p) + 1Vga(p)

for some A, i € R.

Theorem 1.2. The value of f subject to {g1(z,y,z) = 0}N{g2(x,y, z) = 0} attains
its local extrema at p only if

V() =AVai(p) + 1Vga(p)

for some A\, p € R.

Example. Let f(z,y,2) = 2% +y* + 22 be the function subject to {g1(z,y, 2) =
22 +y?—1=0}N{g2(z,y,2) =2 +y+2—1=0}. We can find the local extrema
by solving

(1.4) Vi) =AVa(p) + 1Vga(p),
(1.5) 91(p) =0
(1.6) g2(p) = 0.

(1.7) 2 =2z +
(1.8) 2y = 2\y + 1i;
(1.9) 2z =
(1.10) 22 +y? —1=0;
(1.11) r+y+z—1=0.
We have the following solutions:
(1.12) A\ z,y,2) = (1,0,1,0,0) or
(1 0,0,1,0) or
1 1 1
3777717\/574» 7 71+f
( V2 2( ) ﬂ 2
3 1 2]).
( +—= \[ 2( +V2), - \[ \[ xf)

We can check that f(1,0,0) and f(0,1,0) are local minimums and f(%, —1—%, 1+
\@)’ f( - %7 —%, 1- \/ﬁ) are local maximums.

2. TAYLOR'S FORMULA FOR TWO-VARIABLE FUNCTIONS

Recall that, a function f : Q — R is called smooth if and only if f is differentiable
up to any order. If f is a smooth, one-variable function, then we can write down
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its Taylor’s formula

df 1d*f 1dnf
(2.1) f(a)+a(a)(xfa)+aﬁ(a)(x—a)2+...+i7

— 1 /d\n n
=Y —(5) f@E—-a
n=0
This series will converge to f(x) if we have control on its derivatives.

For f be a two-variable function, we want to derive a similar formula. To achieve
this goal, one can start with the following setting: Let (ai,as) € R?. For any
(z,y) € R?, we define ¥ = (z — a1,y — az). Denote by (z —ay) v1 and (y — az) va.
One can write

(2.2) g(t) = flar + tvi, az + tv)

as a one-variable function. Of course, we will have the Taylor’s formula for g by
(2.1):

(2.3) i %(%)"g(ow.

n=0
By chain rule, we can write
d 0
2.4 — = —~
(24) dt U18x+v28y
So
d\" 0 o\"
25) () = )
(2:5) (dt ( "oz +U28y
= 00 + Ol N80, + C3ol" 030 D92 4wl
::jij(?z‘kzé"‘k)vééénfk>a§
where C}} = ﬁlk),

Now recall that v; = (x —ay) and v = (y — az). So (2.3) can be written as

n= O

fzz ok lk-l( Hln— kagljc )( )(xfal)nik(y*ag)ktn.

n=0 k=0

Suppose that the partial derivatives for f can be controlled, then g(¢) equals the
RHS of (2.6). When ¢ = 1, we have g(1) = f(z,y). So under this setting, we obtain
the Taylor’s Formula for two-variable functions.

(2.7) EZEI %&ﬂ”kak)<xx—aonk@—aak

nOkO



4 MATH2010E LECTURE 8: EXTREME VALUES II AND TAYLOR’S FORMULA

To define precisely the controls for its derivatives, we denote

1 n
(2.8) Ep(z,y) = ol (e, {107 1,105 0y f1, |0y f1} (2 — a1 |” + |y — aal) %
Then
Theorem 2.1. We have

(2.9) ZZ o (20 900) 0@ - )y — ao)*

n=0 k= O
if limy,— 00 En(x,y) = 0 uniformly.

We will discuss this theorem in the next lecture.



