
MATH2010E LECTURE 7: SURFACES IN R3 AND THEIR

CURVATURES

1. Definition of curvatures

Recall from the last lecture we define the gradient for multivariable functions. In
this lecture, we consider smooth functions of the form F : Ω→ R, Ω ⊂ R3. Then

∇F =
(∂F
∂x

,
∂F

∂y
,
∂F

∂z

)
.(1.1)

Assume the graph of F = 0 is a surface. We call it Σ. Meanwhile, we can regarded
it as the level surface S0. As we mentioned in last lecture, we have

Theorem 1.1. Let F (p) = 0. Suppose ∇F (p) 6= 0, then ∇F (p) will be perpendic-
ular to the tangent plane of S0 at p.

Proof. Recall that, the tangent plane of F at p satisfies the equation

∂F

∂x
(p)(x− p1) +

∂F

∂y
(p)(y − p2) +

∂F

∂z
(p)(z − p3) = 0(1.2)

(See (4.2) in Lecture 5). So clearly we have ∇F (p) is the normal vector on S0. �
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Now, we assume that locally we can write F (x, y, z) = f(x, y)− z. Namely, the
equation z = f(x, y) gives the graph of the surface F = 0 locally. We assume under
this setting f : B → R is well-defined for an open set B ⊂ R2.

We have

∇F =
(∂f
∂x
,
∂f

∂y
,−1

)
6= 0.(1.3)
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So for any q ∈ B, we define

~N(q) =
∇F
|∇F |

(q).(1.4)

This is an unit normal vector on the surface Σ. One should notice that

∂

∂x
| ~N |2 = 0 = 2 ~N · ∂

~N

∂x
.(1.5)

So ~N ⊥ ∂ ~N
∂x . By the same token, ~N ⊥ ∂ ~N

∂y . Here we denote the tangent plane of Σ

at point p by Ep. Then

∂ ~N

∂x
,
∂ ~N

∂y
∈ Ep.(1.6)

Under this setting, we have the following two vectors defined for any q ∈ B:

Vx =
(

1, 0,
∂f

∂x
(q)
)
,(1.7)

Vy =
(

0, 1,
∂f

∂y
(q)
)
.(1.8)

Therefore, we can define the following matrix:

Sp :=

(
1

|Vx|2
∂ ~N
∂x · Vx

1
|Vx||Vy|

∂ ~N
∂y · Vx

1
|Vy||Vx|

∂ ~N
∂x · Vy

1
|Vy|2

∂ ~N
∂y · Vy

)
(p).(1.9)

We call this matrix the shape operator.

Proposition 1.2. Sp is a symmetric matrix.

Proof. Since ~N · Vx = 0, so

∂

∂y
( ~N · Vx) = 0 =

∂ ~N

∂y
· Vx + ~N · (∂Vx

∂y
).(1.10)

Similarly, we have

0 =
∂ ~N

∂x
· Vy + ~N · (∂Vy

∂x
).(1.11)

Notice that

∂Vx
∂y

=
(

0, 0,
∂2f

∂y∂x

)
=
(

0, 0,
∂2f

∂x∂y

)
=
∂Vy
∂x

.(1.12)

So by (1.10), (1.11) and (1.12) we have

∂ ~N

∂y
· Vx = − ~N · (∂Vx

∂y
) = − ~N · (∂Vy

∂x
) =

∂ ~N

∂x
· Vy(1.13)

�

Now, since the shape operator is symmetric, so it is diagonalizable. Therefore,
there exists a 2 by 2 orthogonal matrix M such that

MTSpM =

(
κ1 0
0 κ2

)
(1.14)

for some κ1 ≥ κ2 ∈ R. We call these κ1 κ2 the principle curvatures of Σ at p.
Recall that in this case MTM = MMT = I, so det(MTSpM) = det(MMTSp) =
det(Sp). Similarly one can check that tr(MTSpM) = tr(Sp).
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Definition 1.3. Let κ1, κ2 be the principle curvatures of Σ at p. We define the
Gaussian curvature of Σ at p by κ1κ2 = det(Sp); We define the mean curvature
of Σ at p by 1

2 (κ1 + κ2) = 1
2 tr(Sp). We denote the Gaussian curvature by K and

the mean curvature by H.

Example. Let f(x, y) = x2 + 2y2. Here we compute K and H at (0, 0).
By definitions, we have

Vx = (1, 0, 2x)
∣∣∣
x=0,y=0

= (1, 0, 0);(1.15)

Vy = (0, 1, 4y)
∣∣∣
x=0,y=0

= (0, 1, 0);(1.16)

~N =
( 2x√

4x2 + 16y2 + 1
,

4y√
4x2 + 16y2 + 1

,
−1√

4x2 + 16y2 + 1

)
.(1.17)

So

∂ ~N

∂x

∣∣∣
x=0,y=0

=
( 32y2 + 2

(4x2 + 16y2 + 1)
3
2

,
−16xy

(4x2 + 16y2 + 1)
3
2

,
8x

(4x2 + 16y2 + 1)
3
2

)(1.18)

= (2, 0, 0).

Similarly, we can get ∂ ~N
∂y

∣∣∣
x=0,y=0

= (0, 4, 0). Therefore,

S(0,0) =

(
2 0
0 4

)
.(1.19)

So K = det(S(0,0)) = 8 and H = 1
2 tr(S(0,0)) = 3.

In fact, by taking

M =

(
0 1
1 0

)
,(1.20)

we obtain κ1 = 4, κ2 = 2.

we should notice that κ1 κ2 are corresponding to the eigenvalues of Sp. So there
are two eigenvector ~v1, ~v2 such that Sp~vk = κk~vk for k = 1, 2. These two directions
are called the principle directions for this surface. The principle directions have an
important geometric meaning. Let us define

Γ = { all smooth curves passing through the point p}(1.21)

Then there exists a map sending each element in Γ to its curvature at p:

R : Γ→ R;(1.22)

γ 7→ κγ(p).(1.23)

Theorem 1.4. We will have κ1 = max{R(γ)|γ ∈ Γ} and κ2 = min{R(γ)|γ ∈ Γ}.
In addition, there exist a curve tangent to ~v1 which attains this maximum and a
curve tangent to ~v2 which attains this minimum.

These two curves are not unique. We can obtain them by consider the intersec-
tion of the surface and the plane spanned by ~v1, ~n or ~v2, ~n respectively.



4 MATH2010E LECTURE 7: SURFACES IN R3 AND THEIR CURVATURES

Notice that, if κ1, κ2 have the same sign, then we have the surface is convex or
concave. However, if they have the different signs, then we have p is a saddle point.
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