MATH2010E LECTURE 7: SURFACES IN \mathbb{R}^3 AND THEIR CURVATURES

1. Definition of curvatures

Recall from the last lecture we define the gradient for multivariable functions. In this lecture, we consider smooth functions of the form $F: \Omega \to \mathbb{R}, \Omega \subset \mathbb{R}^3$. Then

(1.1)
$$\nabla F = \left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right)$$

Assume the graph of F = 0 is a surface. We call it Σ . Meanwhile, we can regarded it as the level surface S_0 . As we mentioned in last lecture, we have

Theorem 1.1. Let F(p) = 0. Suppose $\nabla F(p) \neq 0$, then $\nabla F(p)$ will be perpendicular to the tangent plane of S_0 at p.

Proof. Recall that, the tangent plane of F at p satisfies the equation

(1.2)
$$\frac{\partial F}{\partial x}(p)(x-p_1) + \frac{\partial F}{\partial y}(p)(y-p_2) + \frac{\partial F}{\partial z}(p)(z-p_3) = 0$$

(See (4.2) in Lecture 5). So clearly we have $\nabla F(p)$ is the normal vector on S_0 . \Box

Pic. 1

Now, we assume that locally we can write F(x, y, z) = f(x, y) - z. Namely, the equation z = f(x, y) gives the graph of the surface F = 0 locally. We assume under this setting $f : B \to \mathbb{R}$ is well-defined for an open set $B \subset \mathbb{R}^2$.

We have

(1.3)
$$\nabla F = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, -1\right) \neq 0.$$

So for any $q \in B$, we define

(1.4)
$$\vec{N}(q) = \frac{\nabla F}{|\nabla F|}(q)$$

This is an unit normal vector on the surface Σ . One should notice that

(1.5)
$$\frac{\partial}{\partial x}|\vec{N}|^2 = 0 = 2\vec{N} \cdot \frac{\partial\vec{N}}{\partial x}$$

So $\vec{N} \perp \frac{\partial \vec{N}}{\partial x}$. By the same token, $\vec{N} \perp \frac{\partial \vec{N}}{\partial y}$. Here we denote the tangent plane of Σ at point p by E_p . Then

(1.6)
$$\frac{\partial \vec{N}}{\partial x}, \frac{\partial \vec{N}}{\partial y} \in E_p$$

Under this setting, we have the following two vectors defined for any $q \in B$:

(1.7)
$$V_x = \left(1, 0, \frac{\partial f}{\partial x}(q)\right).$$

(1.8)
$$V_y = \left(0, 1, \frac{\partial f}{\partial y}(q)\right)$$

Therefore, we can define the following matrix:

(1.9)
$$S_p := \begin{pmatrix} \frac{1}{|V_x|^2} \frac{\partial \vec{N}}{\partial x} \cdot V_x & \frac{1}{|V_x||V_y|} \frac{\partial \vec{N}}{\partial y} \cdot V_x \\ \frac{1}{|V_y||V_x|} \frac{\partial \vec{N}}{\partial x} \cdot V_y & \frac{1}{|V_y|^2} \frac{\partial \vec{N}}{\partial y} \cdot V_y \end{pmatrix} (p)$$

We call this matrix the **shape operator**.

Proposition 1.2. S_p is a symmetric matrix.

Proof. Since $\vec{N} \cdot V_x = 0$, so

(1.10)
$$\frac{\partial}{\partial y}(\vec{N} \cdot V_x) = 0 = \frac{\partial \vec{N}}{\partial y} \cdot V_x + \vec{N} \cdot (\frac{\partial V_x}{\partial y}).$$

Similarly, we have

(1.11)
$$0 = \frac{\partial \vec{N}}{\partial x} \cdot V_y + \vec{N} \cdot (\frac{\partial V_y}{\partial x}).$$

Notice that

(1.12)
$$\frac{\partial V_x}{\partial y} = \left(0, 0, \frac{\partial^2 f}{\partial y \partial x}\right) = \left(0, 0, \frac{\partial^2 f}{\partial x \partial y}\right) = \frac{\partial V_y}{\partial x}$$

So by (1.10), (1.11) and (1.12) we have

(1.13)
$$\frac{\partial \vec{N}}{\partial y} \cdot V_x = -\vec{N} \cdot \left(\frac{\partial V_x}{\partial y}\right) = -\vec{N} \cdot \left(\frac{\partial V_y}{\partial x}\right) = \frac{\partial \vec{N}}{\partial x} \cdot V_y$$

Now, since the shape operator is symmetric, so it is diagonalizable. Therefore, there exists a 2 by 2 orthogonal matrix M such that

(1.14)
$$M^T \mathcal{S}_p M = \begin{pmatrix} \kappa_1 & 0\\ 0 & \kappa_2 \end{pmatrix}$$

for some $\kappa_1 \geq \kappa_2 \in \mathbb{R}$. We call these $\kappa_1 \kappa_2$ the **principle curvatures** of Σ at p. Recall that in this case $M^T M = M M^T = I$, so $det(M^T S_p M) = det(M M^T S_p) = det(S_p)$. Similarly one can check that $tr(M^T S_p M) = tr(S_p)$. **Definition 1.3.** Let κ_1 , κ_2 be the principle curvatures of Σ at p. We define the **Gaussian curvature** of Σ at p by $\kappa_1 \kappa_2 = det(\mathcal{S}_p)$; We define the **mean curvature** of Σ at p by $\frac{1}{2}(\kappa_1 + \kappa_2) = \frac{1}{2}tr(\mathcal{S}_p)$. We denote the Gaussian curvature by K and the mean curvature by H.

Example. Let $f(x, y) = x^2 + 2y^2$. Here we compute K and H at (0, 0). By definitions, we have

(1.15)
$$V_x = (1, 0, 2x)\Big|_{x=0, y=0} = (1, 0, 0)$$

(1.16)
$$V_y = (0, 1, 4y)\Big|_{x=0, y=0} = (0, 1, 0);$$

(1.17)
$$\vec{N} = \left(\frac{2x}{\sqrt{4x^2 + 16y^2 + 1}}, \frac{4y}{\sqrt{4x^2 + 16y^2 + 1}}, \frac{-1}{\sqrt{4x^2 + 16y^2 + 1}}\right).$$

 \mathbf{So}

$$\begin{aligned} (1.18) \\ \frac{\partial \vec{N}}{\partial x}\Big|_{x=0,y=0} &= \Big(\frac{32y^2+2}{(4x^2+16y^2+1)^{\frac{3}{2}}}, \frac{-16xy}{(4x^2+16y^2+1)^{\frac{3}{2}}}, \frac{8x}{(4x^2+16y^2+1)^{\frac{3}{2}}}\Big) \\ &= (2,0,0). \end{aligned}$$

Similarly, we can get $\frac{\partial \vec{N}}{\partial y}\Big|_{x=0,y=0} = (0,4,0)$. Therefore,

(1.19)
$$\mathcal{S}_{(0,0)} = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}.$$

So $K = det(\mathcal{S}_{(0,0)}) = 8$ and $H = \frac{1}{2}tr(\mathcal{S}_{(0,0)}) = 3$.

In fact, by taking

(1.20)
$$M = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix},$$

we obtain $\kappa_1 = 4$, $\kappa_2 = 2$.

we should notice that $\kappa_1 \kappa_2$ are corresponding to the eigenvalues of S_p . So there are two eigenvector \vec{v}_1 , \vec{v}_2 such that $S_p \vec{v}_k = \kappa_k \vec{v}_k$ for k = 1, 2. These two directions are called the principle directions for this surface. The principle directions have an important geometric meaning. Let us define

(1.21) $\Gamma = \{ \text{ all smooth curves passing through the point } p \}$

Then there exists a map sending each element in Γ to its curvature at p:

$$(1.22) R: \Gamma \to \mathbb{R};$$

(1.23)
$$\gamma \mapsto \kappa_{\gamma}(p).$$

Theorem 1.4. We will have $\kappa_1 = \max\{R(\gamma)|\gamma \in \Gamma\}$ and $\kappa_2 = \min\{R(\gamma)|\gamma \in \Gamma\}$. In addition, there exist a curve tangent to $\vec{v_1}$ which attains this maximum and a curve tangent to $\vec{v_2}$ which attains this minimum.

These two curves are not unique. We can obtain them by consider the intersection of the surface and the plane spanned by \vec{v}_1 , \vec{n} or \vec{v}_2 , \vec{n} respectively. Notice that, if κ_1 , κ_2 have the same sign, then we have the surface is convex or concave. However, if they have the different signs, then we have p is a saddle point.

Pic. 2