MATH2010E LECTURE 6: PROPERTIES FOR
DIFFERENTIATIONS

1. DIFFERENTIATIONS AND PARTIAL DERIVATIVES

Let f : Q@ — R be a differentiable function,  C R” open. We called f a
C'-function if and only if all first order partial derivatives % are continuous.
Similarly, we call a C''-function f be a C2-function if and only if all second order

2
partial derivatives #af% are continuous, i,j € {1,2,...,n}.

Proposition 1.1. If f is a C! function, then f is differentiable on Q.

Remark 1.2. The existence of first order partial differentiation at a point, however,
can not imply the differentiation of a function at that point.

Proof. Recall from the last Lecture, we showed that if f is differentiable at p, then
its linear approximation will be

(L1) S )i~ o) + £0)

near p. Let us denote this function by L. We use {€;} to denote the standard
orthonormal basis of R™. For any ¢ # p, we write ¢ —p = > ; h;€;. Then
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by mean value theorem (The value &; € (0, h;) if h; > 0 and §; € (h;,0) if h; < 0.
When hj = 0, we can simply take £ = 0).
If we take ¢ = x, then the RHS of (1.2) is read as

(13) (,ff p+zh 6+ &) (5 — 1) + 1(0):

Combine this equahty and (1.1), we have

R Z|af th@e] (o)
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Because f € C', so RHS of (1.4) converges to 0 as our wish. a
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2. CHAIN RULE

Let f be a C'-function defined on Q C R2. The graph of f gives a surface defined
on R?. Now, suppose we have a parametrized curve p(t) = (x(t), y(t), f(x(t),y(t)))
on this surface, t € (a,b). Then, we can differentiate p with respect to ¢ to obtain
the tangent vector:

(2.1) P(t) = (@' (0), (1), 2 (f(2(2),y(1))).

Pic. 1
To obtain the third component, we have to use the chain rule:
d ofdx  Of dy
(2.2) (flz@),y() = 3= — + 75—

dt  Oxdt  Oydt’

It is not hard to prove that this tangent vector is on the tangent plane of f.

We should also consider problem of the changing coordinates. Let x(r, s), y(r, s)
be differentiable functions (z,y) : @ — R? with its range containing . Then we
can parametrize f by (r,s) and compute the partial derivatives by the chain rule:
af Ofox  Of 0y
or ~oxor oyor
of Of0x  Of 0y
9s " 0w 0s oy os

(2.3)

(2.4)

3. APPLICATIONS

Implicit differentiations. An important application of the formula in (2.2)
is the differentiation of implicit functions. Let F'(z,y) = 0 be a implicit function.
One may expect that y = f(x) locally, or = f(y). Suppose that we have y = f(z)
satisfying F'(x, f(x)) = 0 near xg. A question we can ask is finding the derivative

dy

(3.1) %(xo)-

To solve this problem, we can choose a parameter ¢ such that z = ¢ and y = f(t)
near xg. By applying (2.2) directly, we have

d _OF 9Fdy OF OF dy

(32) 0= 5P @.y(0)

“ oz Toydt oz oyda
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Here we simply use the notations 0, F' to denote BF and 9y F to denote aF . Then
dy 0. F

Directional derivatives. Let f : Q@ — R be a C!, n-variable function. We
have all partial derivatives exist and continuous on €2. Define

af af  of
(3.4) V(f) = (371, o E)

to be the gradient of f. Notice that this is a vector value function Vf : ) — R™.
Let p € Q and ¥ € R", we can also define the direction derivative

(3.5) Dsf(p) = =3 ai

One can consider the line p(t) = p + tv, then Dz f(p) is just the z component of
formula (2.1) at ¢t = 0. Geometrically, this is the derivative of f along the ¥ direc-
tion, multiplied by |].

According to this observation, we consider all ¥ with |17\ = 1. Then we notice
that the maximum of Dz f(p) happens if and only if ¥ = \Vf( )‘ unless V f(p) =

Namely, ¥ and V f(p) have the same direction. Meanwhile, when Djf(p) attaches
maximum, f increases most along v.

Let Vf(p) # 0. Suppose n = 2 and p € Sy(p) for a level curve Sy(,). Then we
have the following theorem.

Theorem 3.1. We have the tangent line Sy, at p is perpendicular to V f(p).

Proof. To prove this theorem, we should know the tangent direction of f at f(p)
first. Let us call this direction ¥. Notice that along this direction, f stays a constant.
So D#f(p) = 0. Therefore, we have ¢ - V f(p) = 0, which proves this theorem. O

The same result holds for n = 3 and Sy (,,) being a surface. V f(p) is perpendicular
to the tangent plane of f at p. We will prove this later.
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