
MATH2010E LECTURE 6: PROPERTIES FOR

DIFFERENTIATIONS

1. Differentiations and partial derivatives

Let f : Ω → R be a differentiable function, Ω ⊂ Rn open. We called f a
C1-function if and only if all first order partial derivatives ∂f

∂xi
are continuous.

Similarly, we call a C1-function f be a C2-function if and only if all second order

partial derivatives ∂2f
∂xi∂xj

are continuous, i, j ∈ {1, 2, ..., n}.

Proposition 1.1. If f is a C1 function, then f is differentiable on Ω.

Remark 1.2. The existence of first order partial differentiation at a point, however,
can not imply the differentiation of a function at that point.

Proof. Recall from the last Lecture, we showed that if f is differentiable at p, then
its linear approximation will be

n∑
i=1

∂f

∂xi
(p)(xi − pi) + f(p)(1.1)

near p. Let us denote this function by L. We use {~ei} to denote the standard
orthonormal basis of Rn. For any q 6= p, we write q − p =

∑n
i=1 hi~ei. Then

f(q) =
(
f(q)− f(p)

)
+ f(p)

(1.2)

=
(
f(p+

n∑
i=1

hi~ei)− f(p+

n−1∑
i=1

hi~ei)
)

+
(
f(p+

n−1∑
i=1

hi~ei)− f(p+

n−2∑
i=1

hi~ei)
)

+ · · ·+
(
f(p+ h1~e1)− f(p)

)
+ f(p)

=

n∑
j=1

∂f

∂xj
(p+

j−1∑
i=1

hi~ei + ξj~ej)hj + f(p)

by mean value theorem (The value ξj ∈ (0, hj) if hj > 0 and ξj ∈ (hj , 0) if hj < 0.
When hj = 0, we can simply take ξj = 0).
If we take q = x, then the RHS of (1.2) is read as

n∑
j=1

∂f

∂xj
(p+

j−1∑
i=1

hi~ei + ξj~ej)(xj − pj) + f(p).(1.3)

Combine this equality and (1.1), we have

|f(x)− L(x)|
|x− p|

≤
n∑

j=1

| ∂f
∂xj

(p+

j−1∑
i=1

hi~ei + ξj~ej)−
∂f

∂xi
(p)|(1.4)

Because f ∈ C1, so RHS of (1.4) converges to 0 as our wish. �
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2. Chain rule

Let f be a C1-function defined on Ω ⊂ R2. The graph of f gives a surface defined
on R3. Now, suppose we have a parametrized curve p(t) = (x(t), y(t), f(x(t), y(t)))
on this surface, t ∈ (a, b). Then, we can differentiate p with respect to t to obtain
the tangent vector:

p′(t) = (x′(t), y′(t),
d

dt
(f(x(t), y(t)))).(2.1)

Pic. 1

To obtain the third component, we have to use the chain rule:

d

dt
(f(x(t), y(t))) =

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
.(2.2)

It is not hard to prove that this tangent vector is on the tangent plane of f .

We should also consider problem of the changing coordinates. Let x(r, s), y(r, s)
be differentiable functions (x, y) : Ω → R2 with its range containing Ω. Then we
can parametrize f by (r, s) and compute the partial derivatives by the chain rule:

∂f

∂r
=
∂f

∂x

∂x

∂r
+
∂f

∂y

∂y

∂r
;(2.3)

∂f

∂s
=
∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s
.(2.4)

3. Applications

Implicit differentiations. An important application of the formula in (2.2)
is the differentiation of implicit functions. Let F (x, y) = 0 be a implicit function.
One may expect that y = f(x) locally, or x = f(y). Suppose that we have y = f(x)
satisfying F (x, f(x)) = 0 near x0. A question we can ask is finding the derivative

dy

dx
(x0).(3.1)

To solve this problem, we can choose a parameter t such that x = t and y = f(t)
near x0. By applying (2.2) directly, we have

0 =
d

dt
F (x(t), y(t)) =

∂F

∂x
+
∂F

∂y

dy

dt
=
∂F

∂x
+
∂F

∂y

dy

dx
.(3.2)
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Here we simply use the notations ∂xF to denote ∂F
∂x and ∂yF to denote ∂F

∂y . Then

dy

dx
= −∂xF

∂yF
.(3.3)

Directional derivatives. Let f : Ω → R be a C1, n-variable function. We
have all partial derivatives exist and continuous on Ω. Define

∇(f) =
( ∂f
∂x1

,
∂f

∂x2
, ...,

∂f

∂xn

)
(3.4)

to be the gradient of f . Notice that this is a vector value function ∇f : Ω→ Rn.
Let p ∈ Ω and ~v ∈ Rn, we can also define the direction derivative

D~vf(p) = ∇(f)(p) · ~v =

n∑
j=1

∂f

∂xj
(p)vj .(3.5)

One can consider the line p(t) = p + t~v, then D~vf(p) is just the z component of
formula (2.1) at t = 0. Geometrically, this is the derivative of f along the ~v direc-
tion, multiplied by |~v|.

According to this observation, we consider all ~v with |~v| = 1. Then we notice

that the maximum of D~vf(p) happens if and only if ~v = ∇f(p)
|∇f(p)| , unless ∇f(p) = 0.

Namely, ~v and ∇f(p) have the same direction. Meanwhile, when D~vf(p) attaches
maximum, f increases most along ~v.

Let ∇f(p) 6= 0. Suppose n = 2 and p ∈ Sf(p) for a level curve Sf(p). Then we
have the following theorem.

Theorem 3.1. We have the tangent line Sf(p) at p is perpendicular to ∇f(p).

Proof. To prove this theorem, we should know the tangent direction of f at f(p)
first. Let us call this direction ~v. Notice that along this direction, f stays a constant.
So D~vf(p) = 0. Therefore, we have ~v · ∇f(p) = 0, which proves this theorem. �

The same result holds for n = 3 and Sf(p) being a surface. ∇f(p) is perpendicular
to the tangent plane of f at p. We will prove this later.
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