MATH2010E LECTURE 5: FUNCTION OF SEVERAL VARIABLES

1. Preliminaries

Let Ω be a subset of \mathbb{R}^n , we call $f: \Omega \to \mathbb{R}$ a *n*-variable function.

Pic. 1

 Ω is called a domain of f. To study the continuity of f, we need several terminologies as follows.

• A set $S \subset \mathbb{R}^n$ is called an **open** set if the following property holds: For any $x \in S$, there exists r > 0 such that for any y satisfying $dist(x, y) < r, y \in S$. In particular, an open ball in \mathbb{R}^n is of the form $B_r(x) = \{y | dist(x, y) < r\}$.

• A set $S \subset \mathbb{R}^n$ is called closed if its complement S^c is open.

• We call a set S is bounded if and only if there exist R > 0 such that $S \subset B_R(0)$. Otherwise, we call it unbounded.

Example. 1. The set $S_1 = \{(x, y) \in \mathbb{R}^2 | x^2 - 9y^2 < 4\}$ is an bounded open set. Since any point in this set can be covered by a small open ball in S_1 . 2. The set $S_2 = \{(x, y) \in \mathbb{R}^2 | y \ge x^2\}$ is an unbounded closed set.

For a *n*-variable function $f: \Omega \to \mathbb{R}, h \in \mathbb{R}$, we define the level set

(1.1)
$$S_h = \{x \in \Omega | f(x) = h\}.$$

(Or we can simply write $\{f(x) = h\}$). When n = 2 and f is smooth, the level set is a curve for "generic" $h \in range(f)$. For example, let $f : \mathbb{R}^2 \to \mathbb{R}$ be the function $f(x, y) = 4x^2 + y^2$. Then S_4 and S_1 are two ellipses. One can also see that S_h is a ellipse unless h = 0 (Notice that in this case $range(f) = \mathbb{R}^+ \cup \{0\}$).

When n = 3, then S_h will be a surface in general. We call it a level surface.

2. Limit and continuity

For any one variable function $f : \mathbb{R} \to \mathbb{R}$, we can define the limit

(2.1)
$$\lim_{x \to x_0} f(x) = L$$

if and only if there exists a function $\delta : \mathbb{R}^+ \to \mathbb{R}^+$ such that $|f(x) - L| < \epsilon$ when $0 < |x - x_0| < \delta(\epsilon)$. This condition can easily be generalized to the condition on \mathbb{R}^n .

Definition 2.1. Let $f : \mathbb{R}^n \to \mathbb{R}$, $x_0 \in \mathbb{R}^n$ and $L \in \mathbb{R}$. We say $\lim_{x \to x_0} f(x) = L$ if and only if there exists a function $\delta : \mathbb{R}^+ \to \mathbb{R}^+$ such that $|f(x) - L| < \epsilon$ when $x \in B_{\delta(\epsilon)}(x_0) - \{x_0\}$.

We should notice that the choice of function δ is depending on x_0 in general.

Proposition 2.2. Suppose $\lim_{x\to x_0} f(x) = L$ and $\lim_{x\to x_0} g(x) = M$. Then

- $\lim_{x\to x_0} (f + cg) = L + cM$ for any $c \in \mathbb{R}$;
- $\lim_{x\to x_0} (f^r g^s) = L^r M^s$ whenever f^r and g^s are well-defined near x_0 and $r, s \in \mathbb{R}$.

Definition 2.3. Let $f : \mathbb{R}^n \to \mathbb{R}$. We say f is continuous at $x_0 \in \mathbb{R}^n$ if and only if $\lim_{x\to x_0} f(x)$ exists and equals $f(x_0)$. Namely, we have $|f(x) - f(x_0)| < \epsilon$ when $x \in B_{\delta(\epsilon)}(x_0)$.

When the function δ can be choose to be independent of x_0 , we call f continuous **uniformly**.

The definition of continuity can also be restated. This can be written as the following theorem.

Theorem 2.4. Let $f : \mathbb{R}^n \to \mathbb{R}$. f is continuous if and only if $f^{-1}(S)$ is open for any open set S.

Proof. Suppose f is a function such that $f^{-1}(S)$ is open for any open set S. Then, for any x_0 fixed and $\epsilon > 0$, we have to find the value $\delta(\epsilon)$ such that

$$(2.2) |f(x) - f(x_0)| < \epsilon$$

when $x \in B_{\delta(\epsilon)}(x_0)$.

By taking $S = B_{\epsilon}(f(x_0))$, we have $f^{-1}(S)$ is an open set in \mathbb{R}^n and $x_0 \in f^{-1}(S)$. So we can choose $r = \delta(\epsilon)$ being the radius of ball $B_r(x_0)$ such that $B_r(x_0) \subset f^{-1}(S)$.

Now, suppose f is continuous and S is a open set. For any $x \in f^{-1}(S)$, we have $f(x) \in S$. So we can choose $\epsilon > 0$ such that $B_{\epsilon}(f(x)) \subset S$. By Definition 2.2, we have

(2.3)
$$f(B_{\delta(\epsilon)}(x)) \subset B_{\epsilon}(f(x)) \subset S.$$

So $B_{\delta(\epsilon)}(x) \subset f^{-1}(S)$, which implies $f^{-1}(S)$ is open.

Two-path for non-existence of limit. By Definition 2.2, we can see that the limit, $\lim_{x\to x_0} f(x)$, will be unique. Therefore, if there are two lines L_1 and L_2 which pass through x_0 , then the following two limits are equal.

(2.4)
$$\lim_{x \to x_0; x \in L_1} f(x) = \lim_{x \to x_0; x \in L_2} f(x).$$

According to this observation, one can conclude the following theorem.

Theorem 2.5. Suppose there are two lines L_1 , L_2 passing through x_0 and

(2.5)
$$\lim_{x \to x_0; x \in L_1} f(x) \neq \lim_{x \to x_0; x \in L_2} f(x).$$

Then f is not continuous at x_0 .

The "two lines" can be replaced by any two continuous curve passing through x_0 .

3. PARTIAL DIFFERENTIATIONS

Let $f:\Omega\to\mathbb{R}$ be a $n\text{-variable function},\,\Omega\subset\mathbb{R}^n$ is an open set. Then we can define

(3.1)
$$\frac{\partial}{\partial x_i} f(p_1, p_2, ..., p_n) := \lim_{h \to 0} \frac{f(p_1, p_2, ..., p_i + h, ..., p_n) - f(p_1, p_2, ..., p_n)}{h}$$

if the limit on the right exists. This limit is called the *i*th-**partial differentiation** of f at $p = (p_1, p_2, ..., p_n)$. One can easily figure out its geometric meaning, the *i*th-partial differentiation is the derivative along the x_i -direction when we fix all other components.

Let f, g are two *n*-variable functions, $c \in \mathbb{R}$. Then, clearly we have

(3.2)
$$\frac{\partial}{\partial x_i}(f+cg) = \frac{\partial f}{\partial x_i} + c\frac{\partial g}{\partial x_i}$$

For the second partial derivatives, we have the following theorem.

Theorem 3.1. Suppose $\frac{\partial^2 f}{\partial x_j \partial x_i}$, $\frac{\partial^2 f}{\partial x_i \partial x_j}$ are continuous. Then

(3.3)
$$\frac{\partial^2 f}{\partial x_j \partial x_i} = \frac{\partial^2 f}{\partial x_i \partial x_j}.$$

Proof. Let h, k > 0 and $p = (p_1, ..., p_n) \in \Omega$. By applying the mean value theorem twice, we have

$$(3.4) \qquad \frac{1}{hk} \Big(f(p_1, ..., p_i + h, ..., p_j + k, ..., p_n) - f(p_1, ..., p_i + h, ..., p_j, ..., p_n) \\ - f(p_1, ..., p_i, ..., p_j + k, ..., p_n) - f(p_1, ..., p_i, ..., p_j, ..., p_n) \Big) \\ = \frac{\partial^2 f}{\partial x_j \partial x_i} (p_1, ..., p_i + h_1, ..., p_j + k_1, ..., p_n)$$

for some $h_1 < h, k_1 < k$.

By the same token, if we apply the mean value theorem in different order, we have the LHS of (3.4) can also be written as

(3.5)
$$\frac{\partial^2 f}{\partial x_i \partial x_j}(p_1, ..., p_i + h_2, ..., p_j + k_2, ..., p_n)$$

for some $h_2 < h, k_2 < k$. So

(3.6)
$$\frac{\partial^2 f}{\partial x_j \partial x_i}(p_1, ..., p_i + h_1, ..., p_j + k_1, ..., p_n) \\ = \frac{\partial^2 f}{\partial x_i \partial x_j}(p_1, ..., p_i + h_2, ..., p_j + k_2, ..., p_n).$$

By taking the limit $h, k \to 0$, we prove this theorem.

4. DIFFERENTIABILITY

Suppose that $f: \Omega \to \mathbb{R}$ is a *n*-variable function with $\Omega \subset \mathbb{R}^n$ open. Then we call f is differentiable at p if and only if there exists a linear approximation of f near p. That is

(4.1)
$$\lim_{\vec{v}\to 0} \frac{1}{|\vec{v}|} (f(p+\vec{v}) - L(p+\vec{v})) = 0$$

where $L(p + \vec{v}) = \vec{\alpha} \cdot \vec{v} + h$ for $\alpha \in \mathbb{R}^n$ and $h \in \mathbb{R}$.

When n = 2, the graph of L will be a plane in \mathbb{R}^3 . We call it a tangent plane for f.

One can show that, by (4.1), the partial derivatives (exist by (4.1)) for f and L should be the same at p. Therefore, we have

$$\frac{\partial f}{\partial x_i}(p) = \frac{\partial L}{\partial x_i}(p) = \vec{\alpha} \cdot \vec{e_i} = \alpha_i$$

where e_i is the vector with 1 on *i*th component and 0 otherwise. So

$$\vec{\alpha} = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n}\right).$$

By taking $\vec{v} = 0$ in (4.1), we have h = f(p). So

(4.2)
$$L(x) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(p)(x_i - p_i) + f(p)$$

when f is differentiable at p.

Remark 4.1. One can show that once f is differentiable at p, then f is continuous at p.