MATH2010E LECTURE 5: FUNCTION OF SEVERAL
VARIABLES

1. PRELIMINARIES

Let Q be a subset of R, we call f: 2 — R a n-variable function.
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Q is called a domain of f. To study the continuity of f, we need several terminolo-
gies as follows.

e A set S C R” is called an open set if the following property holds: For any
x € S, there exists r > 0 such that for any y satisfying dist(z,y) <r, y € S. In
particular, an open ball in R" is of the form B, (z) = {y|dist(x,y) < r}.

e A set S C R” is called closed if its complement S€ is open.

e We call a set S is bounded if and only if there exist R > 0 such that S C Bg(0).
Otherwise, we call it unbounded.

Example. 1. The set S; = {(z,y) € R?|z? — 9y? < 4} is an bounded open set.
Since any point in this set can be covered by a small open ball in S;.
2. The set Sy = {(z,y) € R?|y > 2?} is an unbounded closed set.

For a n-variable function f: ) — R, h € R, we define the level set
(1.1) Sy ={x € Q|f(z) = h}.

(Or we can simply write {f(z) = h}). When n = 2 and f is smooth, the level set
is a curve for "generic” h € range(f). For example, let f : R? — R be the function
f(z,y) = 42% + 3%, Then S; and S; are two ellipses. One can also see that Sy, is a
ellipse unless h = 0 (Notice that in this case range(f) = Rt U{0}).
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When n = 3, then S}, will be a surface in general. We call it a level surface.

2. LIMIT AND CONTINUITY
For any one variable function f: R — R, we can define the limit

(21) Jim f(x) =L
if and only if there exists a function § : Rt — R* such that |f(z) — L| < € when

0 < |z — 20| < d(¢). This condition can easily be generalized to the condition on
R™.

Definition 2.1. Let f : R" - R, o € R” and L € R. We say lim,_,,, f(z) = L
if and only if there exists a function 6 : RT — RT such that |f(x) — L| < € when
z € Bs(e)(wo) — {zo}-

We should notice that the choice of function § is depending on z( in general.

Proposition 2.2. Suppose lim,_,,, f(z) = L and lim,_,,, g(z) = M. Then
o lim, .. (f +cg) =L+ cM for any c € R;
o lim, ., (f"g°) = L"M*® whenever f” and g° are well-defined near z and r, s € R.

Definition 2.3. Let f : R™ — R. We say f is continuous at xy € R™ if and only
if lim, ., f(z) exists and equals f(x¢). Namely, we have |f(z) — f(z0)| < € when
T € Bg(e) (x0>

When the function ¢ can be choose to be independent of xg, we call f continuous
uniformly.

The definition of continuity can also be restated. This can be written as the
following theorem.

Theorem 2.4. Let f : R™ — R. f is continuous if and only if f~1(S) is open for
any open set S.
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Proof. Suppose f is a function such that f~1(S) is open for any open set S. Then,
for any x¢ fixed and € > 0, we have to find the value d(¢) such that

(2.2) [f (@) = flzo)| <€

when x € Bj(e) (o).

By taking S = B(f(x0)), we have f~1(S) is an open set in R and ¢ € f~*(S).
So we can choose r = §(€) being the radius of ball B,.(zg) such that B,(zg) C
F7HS).

Now, suppose f is continuous and S is a open set. For any x € f~1(S), we have
f(x) € S. So we can choose € > 0 such that B.(f(z)) C S. By Definition 2.2, we
have
(2.3) f(Bse(x)) € Be(f(z)) C 5.

So Bse(z) C f71(9), which implies f~1(.9) is open. O

Two-path for non-existence of limit. By Definition 2.2, we can see that the

limit, lim,_., f(x), will be unique. Therefore, if there are two lines L; and Lo
which pass through z, then the following two limits are equal.

(2.4) lim  f(z)= lim  f(x).

r—xo;r€L] x—xo;x€ Lo

According to this observation, one can conclude the following theorem.

Theorem 2.5. Suppose there are two lines Ly, Lo passing through xo and

(2.5) lim  f(z)# lim  f(x).

r—xo;xE€L4 r—x0;€ Lo

Then f is not continuous at xg.

The "two lines” can be replaced by any two continuous curve passing through xg.

3. PARTIAL DIFFERENTIATIONS

Let f: Q — R be a n-variable function, 2 C R™ is an open set. Then we can
define

. f(plap23"'api+ha"'apn)7f(p1ap25"-apn)
=1
axif(p17p27 7pn) hl—>rnO h

if the limit on the right exists. This limit is called the ith-partial differentiation
of f at p = (p1,p2,...,Pn). One can easily figure out its geometric meaning, the
ith-partial differentiation is the derivative along the z;-direction when we fix all
other components.

(3.1)

Let f, g are two n-variable functions, ¢ € R. Then, clearly we have

9 _df | dg

For the second partial derivatives, we have the following theorem.

(3.2)
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Theorem 3.1. Suppose Du,0w, D0z, UTC continuous. Then
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(3.3)

Proof. Let h, k> 0 and p = (p1, ..., pn) € Q. By applying the mean value theorem
twice, we have

1
(34) E (f(pla e Di + h7 "'7pj + ka apn) - f(p17 <y Di + ha -"vpja apn)
- f(pl) wey Diy "'7pj + ka apn) - f(pl) «ey Diy "'7pj, 7pn))
82
:8.'E 8f$ (p17 -y Di + hla -~y Dy + klv 7pn)
jULg

for some hy < h, k1 < k.
By the same token, if we apply the mean value theorem in different order, we
have the LHS of (3.4) can also be written as

(3.5) Of (  +h i +k )
. 6121617] P13 Pi 27...7pj 2y eeey P
for some hy < h, ko < k. So
0% f
(36) axjaxz (p177pl+h1aapj+k177pn)
0% f
= v i+ hoy D+ Koy PR
(%iamj(pl’ yDi + hay o pj 4 ko, pn)
By taking the limit h, kK — 0, we prove this theorem. ([

4. DIFFERENTIABILITY

Suppose that f : Q — R is a n-variable function with Q C R™ open. Then we
call f is differentiable at p if and only if there exists a linear approximation of f
near p. That is

(4.1) lim —(f(p+ ) — L(p+ 7)) = 0

where L(p +7) =& -+ h for « € R" and h € R.

L

Pic. 3
When n = 2, the graph of L will be a plane in R3. We call it a tangent plane for f.
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One can show that, by (4.1), the partial derivatives (exist by (4.1)) for f and L
should be the same at p. Therefore, we have

af oL

6581' p)= 3:17Z

where e; is the vector with 1 on ith component and 0 otherwise. So

- (8f of ﬁ).

(p)=a-é=uqw

0z’ Oxs’ 7 Oz
By taking ¥ =0 in (4.1), we have h = f(p). So
(4.2) L(z) =} == (p)(xi —pi) + f(p)

B i=1 Oz
when f is differentiable at p.

Remark 4.1. One can show that once f is differentiable at p, then f is continuous
at p.



