
MATH2010E LECTURE 5: FUNCTION OF SEVERAL

VARIABLES

1. Preliminaries

Let Ω be a subset of Rn, we call f : Ω→ R a n-variable function.
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Ω is called a domain of f . To study the continuity of f , we need several terminolo-
gies as follows.

• A set S ⊂ Rn is called an open set if the following property holds: For any
x ∈ S, there exists r > 0 such that for any y satisfying dist(x, y) < r, y ∈ S. In
particular, an open ball in Rn is of the form Br(x) = {y|dist(x, y) < r}.

• A set S ⊂ Rn is called closed if its complement Sc is open.

•We call a set S is bounded if and only if there exist R > 0 such that S ⊂ BR(0).
Otherwise, we call it unbounded.

Example. 1. The set S1 = {(x, y) ∈ R2|x2 − 9y2 < 4} is an bounded open set.
Since any point in this set can be covered by a small open ball in S1.
2. The set S2 = {(x, y) ∈ R2|y ≥ x2} is an unbounded closed set.

For a n-variable function f : Ω→ R, h ∈ R, we define the level set

Sh = {x ∈ Ω|f(x) = h}.(1.1)

(Or we can simply write {f(x) = h}). When n = 2 and f is smooth, the level set
is a curve for ”generic” h ∈ range(f). For example, let f : R2 → R be the function
f(x, y) = 4x2 + y2. Then S4 and S1 are two ellipses. One can also see that Sh is a
ellipse unless h = 0 (Notice that in this case range(f) = R+ ∪ {0}).
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When n = 3, then Sh will be a surface in general. We call it a level surface.

2. Limit and continuity

For any one variable function f : R→ R, we can define the limit

lim
x→x0

f(x) = L(2.1)

if and only if there exists a function δ : R+ → R+ such that |f(x) − L| < ε when
0 < |x − x0| < δ(ε). This condition can easily be generalized to the condition on
Rn.

Definition 2.1. Let f : Rn → R, x0 ∈ Rn and L ∈ R. We say limx→x0
f(x) = L

if and only if there exists a function δ : R+ → R+ such that |f(x) − L| < ε when
x ∈ Bδ(ε)(x0)− {x0}.

We should notice that the choice of function δ is depending on x0 in general.

Proposition 2.2. Suppose limx→x0
f(x) = L and limx→x0

g(x) = M . Then
• limx→x0

(f + cg) = L+ cM for any c ∈ R;
• limx→x0

(frgs) = LrMs whenever fr and gs are well-defined near x0 and r, s ∈ R.

Definition 2.3. Let f : Rn → R. We say f is continuous at x0 ∈ Rn if and only
if limx→x0

f(x) exists and equals f(x0). Namely, we have |f(x)− f(x0)| < ε when
x ∈ Bδ(ε)(x0).

When the function δ can be choose to be independent of x0, we call f continuous
uniformly.

The definition of continuity can also be restated. This can be written as the
following theorem.

Theorem 2.4. Let f : Rn → R. f is continuous if and only if f−1(S) is open for
any open set S.
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Proof. Suppose f is a function such that f−1(S) is open for any open set S. Then,
for any x0 fixed and ε > 0, we have to find the value δ(ε) such that

|f(x)− f(x0)| < ε(2.2)

when x ∈ Bδ(ε)(x0).

By taking S = Bε(f(x0)), we have f−1(S) is an open set in Rn and x0 ∈ f−1(S).
So we can choose r = δ(ε) being the radius of ball Br(x0) such that Br(x0) ⊂
f−1(S).

Now, suppose f is continuous and S is a open set. For any x ∈ f−1(S), we have
f(x) ∈ S. So we can choose ε > 0 such that Bε(f(x)) ⊂ S. By Definition 2.2, we
have

f(Bδ(ε)(x)) ⊂ Bε(f(x)) ⊂ S.(2.3)

So Bδ(ε)(x) ⊂ f−1(S), which implies f−1(S) is open. �

Two-path for non-existence of limit. By Definition 2.2, we can see that the
limit, limx→x0

f(x), will be unique. Therefore, if there are two lines L1 and L2

which pass through x0, then the following two limits are equal.

lim
x→x0;x∈L1

f(x) = lim
x→x0;x∈L2

f(x).(2.4)

According to this observation, one can conclude the following theorem.

Theorem 2.5. Suppose there are two lines L1, L2 passing through x0 and

lim
x→x0;x∈L1

f(x) 6= lim
x→x0;x∈L2

f(x).(2.5)

Then f is not continuous at x0.

The ”two lines” can be replaced by any two continuous curve passing through x0.

3. Partial Differentiations

Let f : Ω → R be a n-variable function, Ω ⊂ Rn is an open set. Then we can
define

∂

∂xi
f(p1, p2, ..., pn) := lim

h→0

f(p1, p2, ..., pi + h, ..., pn)− f(p1, p2, ..., pn)

h
(3.1)

if the limit on the right exists. This limit is called the ith-partial differentiation
of f at p = (p1, p2, ..., pn). One can easily figure out its geometric meaning, the
ith-partial differentiation is the derivative along the xi-direction when we fix all
other components.

Let f , g are two n-variable functions, c ∈ R. Then, clearly we have

∂

∂xi
(f + cg) =

∂f

∂xi
+ c

∂g

∂xi
.(3.2)

For the second partial derivatives, we have the following theorem.
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Theorem 3.1. Suppose ∂2f
∂xj∂xi

, ∂2f
∂xi∂xj

are continuous. Then

∂2f

∂xj∂xi
=

∂2f

∂xi∂xj
.(3.3)

Proof. Let h, k > 0 and p = (p1, ..., pn) ∈ Ω. By applying the mean value theorem
twice, we have

1

hk

(
f(p1, ..., pi + h, ..., pj + k, ..., pn)− f(p1, ..., pi + h, ..., pj , ..., pn)(3.4)

− f(p1, ..., pi, ..., pj + k, ..., pn)− f(p1, ..., pi, ..., pj , ..., pn)
)

=
∂2f

∂xj∂xi
(p1, ..., pi + h1, ..., pj + k1, ..., pn)

for some h1 < h, k1 < k.
By the same token, if we apply the mean value theorem in different order, we

have the LHS of (3.4) can also be written as

∂2f

∂xi∂xj
(p1, ..., pi + h2, ..., pj + k2, ..., pn)(3.5)

for some h2 < h, k2 < k. So

∂2f

∂xj∂xi
(p1, ..., pi + h1, ..., pj + k1, ..., pn)(3.6)

=
∂2f

∂xi∂xj
(p1, ..., pi + h2, ..., pj + k2, ..., pn).

By taking the limit h, k → 0, we prove this theorem. �

4. Differentiability

Suppose that f : Ω → R is a n-variable function with Ω ⊂ Rn open. Then we
call f is differentiable at p if and only if there exists a linear approximation of f
near p. That is

lim
~v→0

1

|~v|
(f(p+ ~v)− L(p+ ~v)) = 0(4.1)

where L(p+ ~v) = ~α · ~v + h for α ∈ Rn and h ∈ R.
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When n = 2, the graph of L will be a plane in R3. We call it a tangent plane for f .
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One can show that, by (4.1), the partial derivatives (exist by (4.1)) for f and L
should be the same at p. Therefore, we have

∂f

∂xi
(p) =

∂L

∂xi
(p) = ~α · ~ei = αi

where ei is the vector with 1 on ith component and 0 otherwise. So

~α =
( ∂f
∂x1

,
∂f

∂x2
, ...,

∂f

∂xn

)
.

By taking ~v = 0 in (4.1), we have h = f(p). So

L(x) =

n∑
i=1

∂f

∂xi
(p)(xi − pi) + f(p)(4.2)

when f is differentiable at p.

Remark 4.1. One can show that once f is differentiable at p, then f is continuous
at p.


