
MATH2010E LECTURE 3: LINES, PLANES AND SURFACES II

1. Quadric surfaces, Part II

Last time we discuss about type 1 quadric surfaces. Now we discuss type 2 and
type 3. These types degenerate from type 1.

Type 2. The second type is of the form when a coefficient of x2, y2 or z2 is
zero. Let us suppose the coefficient for z2 is zero. Then the models for these quadric
surface can be written as

Q = {ax2 + by2 = fz}.(1.1)

Or

Q = {ax2 + by2 = g}.(1.2)

In the first case, we will have the following two graphs for Q.

Pic. 1

The one on the left is called elliptic paraboloid, it satisfies the equation

x2

A2
+
y2

B2
= cz(1.3)

(it is the case that a, b > 0, we take A = 1√
a

and B = 1√
b
).

The one one the right is called hyperbolic paraboloid, it satisfies the equation

x2

A2
− y2

B2
= cz(1.4)

(it is the case that a > 0 and b < 0, we take A = 1√
a

and B = 1√
−b ).

1



2 MATH2010E LECTURE 3: LINES, PLANES AND SURFACES II

The model (1.2) are all cylinders. One can easily draw the picture according to
its graph on xy-plane. It will be either a elliptic cylinder or hyperbolic cylin-
der, depending on the sign of a and b.

Pic. 2

Type 3. If the coefficients for x2, y2 and z2 degenerate more, say only one of
them is non-zero, then the situation becomes easier. There are two models which
can describe Q under this circumstance.

Q = {ax2 = y}.(1.5)

Or

Q = {ax2 = g}.(1.6)

In the first case, we will have Q being a parabolic cylinder. In the second case,
we will have two parallel planes sitting in R3 (Maybe coincide, of course).

Pic. 3

2. Form general cases to these models

Recall that, the quadric surfaces are of the form

Q = {ax2 + by2 + cz2 + pxy + qyz + rxz + dx+ ey + fz + g = 0}.(2.1)
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Here we will show that, under a suitable coordinate system, any Q can be written
as the solution of the equation we discussed before.

To achieve this goal, we should recall some theorems of linear algebra first. Let
M be a n by n matrix. We call a vector ~v eigenvector of M if and only if there
exists λ ∈ R such that

M~v = λ~v.

We also call λ the eigenvalue of M .

These eigenvalues of M must be solutions of p(x) = det(xI −M). Since R is not
algebraically closed, so λ dose not always exist in R. However, when the matrix M
is symmetric, i.e. M = (aij)

n
i,j=1 with aij = aji for all i, j, then we always have

real eigenvalues. To prove this theorem, we use the dot product for Cn:

~v · ~w = v1w̄1 + v2w̄2 + · · ·+ vnw̄n.(2.2)

Suppose λ is a solution of p(λ) = det(λI −M), then there also exists an (complex)
eigenvector ~v such that M~v = λ~v. So

~v ·M~v = ~v · λ̄~v = λ̄|~v|2.(2.3)

However, since M = MT , so ~v ·M~v = MT~v ·~v = λ~v ·~v = λ|~v|2. Therefore, we have

λ̄ = λ,

which implies λ is real.

In fact, we have the following theorem.

Theorem 2.1. Let M = (aij)
n
i,j=1 be a n by n symmetric matrix. Then there

exists a basis {~v1, ~v2, ..., ~vn} such that all ~vi are unit eigenvectors of M . Moreover,
we have ~vi ⊥ ~vj for all i 6= j.

Now, for any quadric surface of the form (2.1), the quadric term can be written
as

~v ·M~v = (x, y, z)

 a p
2

r
2

p
2 b q

2
r
2

q
2 c

 x
y
z

(2.4)

= ax2 + by2 + cz2 + pxy + qyz + rxz.

By Theorem 2.1, there exists R := (~vT1 , ~v
T
2 , ~v

T
3 ) with ~vi are eigenvectors of M with

~vi · ~vj = δij (This is Kronecker delta: δij = 0 if i 6= j and δij = 1 if i = j). So we
have

RTMR =

 λ1 0 0
0 λ2 0
0 0 λ3

 .(2.5)

Therefore, by changing of variables, u
v
w

 := RT

 x
y
z

 ,(2.6)
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we have

ax2 + by2 + cz2 + pxy + qyz + rxz = λ1u
2 + λ2v

2 + λ3w
2.(2.7)

Meanwhile, under the new coordinate, the linear term dx+ ey+ fz can be written
as d′u + e′v + f ′w for some d′, e′, f ′ ∈ R. So we can conclude that any quadric
surface Q can be written as the form

Q = {ax2 + by2 + cz2 + dx+ ey + fz + g = 0}(2.8)

under a suitable coordinate system.

Then, by completing the square for equation (2.8) and changing the variables
again, a quadric surface must be one of the models we discuss above.

3. Proof of Theorem 2.1

The conclusion of Theorem 2.1 can be obtained by induction. Clearly, when
n = 1, Theorem 2.1 is true. Now, we suppose the conclusion holds for n = k − 1.
Then we consider a symmetric k by k matrix M . Let λ be a solution of p(x) =
det(xI −M). There exists a corresponding eigenvector ~v such that

M~v = λ~v.(3.1)

and |~v| = 1.

Let R be any matrix satisfying:
1. The first column vector of R is ~vT .
2. Any two column vectors are perpendicular to each other.
3. The length of every column vector is 1.

One can obtained column vectors of R by using Gram-Schmidt process on
{~v, e1, e2, e3, ..., en} and throw away the zero vector once it appears.

Once we have R,

RTMR =


λ 0 . . . 0
0 b22 . . . b2n
...

...
. . .

...
0 bn2 . . . bnn

 .(3.2)

Notice that RTMR is also symmetric, so by induction, the k−1 by k−1 submatrix
on the lower-right corner is diagonalizable. By induction, we finish our proof.

Remark 3.1. We should notice that when all eigenvalues of M are non-zero, then
the quadric surface Q must be of the type 1; When there is one eigenvalue of M is
zero, then Q is of type 2; When there are two eigenvalue of M is zero, then Q is of
type 3.


