
MATH2010E LECTURE 2: LINES, PLANES AND SURFACES I

1. Parametrization for lines on R3

Let ~v ∈ R3 be a vector. We can consider the line passing through a point p

L = {p+ t~v|t ∈ R} = {(p1 + tv1, p2 + tv2, p3 + tv3)|t ∈ R}.(1.1)

We call this t the parameter of L. To be more precise, a parameter of L is a variable
which gives us an 1 − 1 correspondence between R and L. In this case, for each
t ∈ R, it corresponds to a unique point on L. One can also choose q ∈ L, ~w//~v such
that

L = {q + s~w|s ∈ R} = {(q1 + sw1, q2 + sw2, q3 + sw3)|s ∈ R}(1.2)

(See Picture 1). In this case, s is also a parameter for the same line L. So there
are many different choices of parameters. Find a parameter for a geometric object
is called ”parametrize.”

In addition, a parameter for L is not necessarily linear. We will see this in the
following example.

Example 1. For p = (2, 1, 27 ), ~v = (7,−3, 2), we have

L = {(7t+ 2,−3t+ 1, 2t+
2

7
)|t ∈ R}.(1.3)

This is the line passing (2, 1, 27 ) with its tangent parallel to (7,−3, 2). We can also

choose s3 = t, then

L = {(7s3 + 2,−3s3 + 1, 2s3 +
2

7
)|t ∈ R}.(1.4)

In this case, s is also a parameter of L, but it is not linear.
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2. Parametrization for Planes on R3

To formulate the equation for a plane, one can use the property of the dot
product. Let p = (p1, p2, p3) be a point on the plane P , ~n = (n1, n2, n3) be the

1



2 MATH2010E LECTURE 2: LINES, PLANES AND SURFACES I

normal vector for this plane. Then we have

P = {(x, y, z) ∈ R3|(p1 − x, p2 − y, p3 − z) · ~n = 0}
= {(x, y, z) ∈ R3|n1p1 − n1x+ n2p2 − n2y + n3p3 − n3z = 0}.

So for any (x, y, z) on this plane P , it will satisfy

n1x+ n2y + n3z − (n1p1 + n2p2 + n3p3) = 0.(2.1)

We will simply use {n1x+ n2y + n3z − (n1p1 + n2p2 + n3p3) = 0} to denote P .

To parametrize plane P , we have find two parameters which give us a 1− 1 cor-
respondence between R2 and P . The candidates of them are many. For example,
when n3 6= 0, we can choose (x, y) as our parameters because for any (x, y) ∈ R2,
there exists z solving the equation (2.1) which can be written in terms of x and y.

One should notice that the equation (2.1) for the plane is unique up to scal-
ing (For example, the plane P = {2x + 3y − z − 7 = 0} can be also written as
{4x + 6y − 2z − 14 = 0}). To see this, we should notice that the coefficients for x
y and z form a normal vector of P . Then the constant term can be shown to be
proportional to the length of this normal vector by plug in some fix point p ∈ P
into the equation.

Another way to parametrize a plane is to find two linear independent vector ~v,
~w and a point p on the plane. Then for any (s, t) ∈ R2, we can map it to the point
p+ s~v+ t~w. So this gives us a parametrization. Meanwhile, once we have ~v, ~w and
p, we can write down the equation for P by using the cross product:

P = {(x− p1, y − p2, z − p3) · (~v × ~w) = 0}.(2.2)

3. Intersections and distances

Let P1, P2 be two planes defined by equations:

a1x+ b1y + c1z = m1,(3.1)

a2x+ b2y + c2z = m2.(3.2)

The angle between these two planes can be derived by dot product: Let ~n1 =
(a1, b1, c1), ~n2 = (a2, b2, c2), then

~n1 · ~n2 = (a1, b1, c1) · (a2, b2, c2) = a1a2 + b1b2 + c1c2(3.3)

= |~n1||~n2| cos(θ) =
√
a21 + b21 + c21

√
a22 + b22 + c22 cos(θ)(3.4)

where θ is one of the angle between P1 and P2 (See Picture 2 below). So cos(θ) can
be expressed as

cos(θ) =
a1a2 + b1b2 + c1c2√

a21 + b21 + c21
√
a22 + b22 + c22

.
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P1 and P2 will intersect on a line in R3 unless P1//P2 (including P1 = P2). To
find a parametrization for this line L. One can find a point p on this line first.
Then

L = {p+ t~n1 × ~n2|t ∈ R}.(3.5)

To find this point p, one can consider the following strategy: Because P1 and P2

are not parallel, so does ~n1 and ~n2. Therefore, one of the following determinants
will be non-zero: ∣∣∣∣ a1 b1

a2 b2

∣∣∣∣ , ∣∣∣∣ b1 c1
b2 c2

∣∣∣∣ , ∣∣∣∣ a1 c1
a2 c2

∣∣∣∣ .
Let the first one be non-zero. In this case, we take z = 0 and solve (x, y) for equa-
tions (2.3) and (2.4). Then we get a solution (x, y, 0) := p.

Now we consider the intersection between a line and a plane. Let L = {p+ t~v|t ∈
R} and P = {ax + by + cz = m}. Then L and P intersect at a point in general.
To find this point, we plug in (x, y, z) = p+ t~v into the equation ax+ by + cz = m
and solve t.

Example 2. Let L = {(1 + 3t, 7t, 1 − 2t)} and P = {2x + 3y − z + 7 = 0}.
Then we solve

2(1 + 3t) + 3(7t)− (1− 2t) + 7 = 0.

This gives us t = − 8
29 . So L ∩ P = {( 5

29 ,−
56
29 ,

45
29 )}.

We close this section by introducing the distance formula for a line and a point
and the distance formula for a plane and a point. Let q be a point in R3 and
L = {p+ t~v|t ∈ R} (See Picture 3). Then

dist(q, L) = | ~pq|| sin(θ)| = | ~pq × ~v|
|~v|

.(3.6)

Pic. 3



4 MATH2010E LECTURE 2: LINES, PLANES AND SURFACES I

Let q be a point and P = {ax + by + cz = m} be a plane, then we can find the
intersection between P and L = {q+t~n|t ∈ R} where ~n = (a, b, c). Let L∩P = {p},
then the distance dist(q, P ) = dist(p, q) because L is perpendicular to P and q ∈ L
(See Picture 4).

Pic. 4

4. Quadric surfaces, Part I

In general, a quadric surface is a surface

Q = {ax2 + by2 + cz2 + pxy + qyz + rxz + dx+ ey + fz + g = 0}(4.1)

for some a, b, c, p, q, r, d, e, f, g ∈ R. Here we start with some standard models. The
we show that all the cases can be written as one of these models after changing the
coordinate.

Type 1. There are four different models are of this type. All of them are of the
form

Q = {ax2 + by2 + cz2 = g}(4.2)

with a, b, c are all non-zero. For the quadric surface of this type, either all a, b, c
have the same sign (say positive, otherwise multiply the equation by −1) or two of
them have the same sign, but not the other. For the previous case, we have the
model of ellipsoids (See Picture). Of course, when the g is negative, it is an empty
surface.
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x2

α2
+
y2

β2
+
z2

γ2
= 1(4.3)
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where α =
√

g
a , β =

√
g
b and γ =

√
g
c .

When a, b > 0 and c < 0, the graph of Q will be very different depending on
either g > 0 g < 0 or g = 0. When g > 0, Q will be a hyperboloid of one sheet.
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x2

α2
+
y2

β2
− z2

γ2
= 1(4.4)

where α =
√

g
a , β =

√
g
b and γ =

√
g
−c .

When g < 0, Q will be a hyperboloid of two sheets.
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−x
2

α2
− y2

β2
+
z2

γ2
= 1(4.5)

where α =
√

−g
a , β =

√
−g
b and γ =

√
g
c .

When g = 0, Q will be a elliptic cone:
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ax2 + by2 − cz2 = 0.(4.6)


