
MATH2010E LECTURE 12: IMPLICIT FUNCTION THEOREM

1. Introduction

Recall that we have already discussed the following situation: Let F (x, y) = 0
be a implicit function with F being a C1 map from R2 to R. Then we have the
formula

dy

dx
= −Fx

Fy
(1.1)

when Fy 6= 0. This shows us that y can be written as a function of x near a point
p if and only if Fy(p) 6= 0.

Let us also recall that the way we obtain (1.1). Suppose there exists a variable
s with x = s and y = y(s), we have

Fx + Fy
dy

dx
= 0(1.2)

by using the chain rule. In the following paragraphs we will generalize this equation.

Let F : Rm+n → Rn be a C1 function. So for any x ∈ Rm, y ∈ Rn, we can write
F (x, y) = (f1(x, y), f2(x, y), ..., fn(x, y)) with all fi : Rm+n → R are C1.

Now, let us suppose that there exist parameters s1, ..., sn with xi = si and
y = y(s1, ..., sn). Under this setting, we have
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(1.3)

= Fx + [Fy]
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for any i = 1, 2, ..., n. Here [Fy] is a matrix value function defined as the following
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To obtain (1.1) from (1.2), divide the both sides of (1.1) by Fy when it is non zero.
In this general case, the situation is similar. We have to ”divide” (1.3) by [Fy].
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This idea leads the following theorem.

Theorem 1.1. Let F ∈ C1. Suppose [Fy] is invertible at a point p, then we can
write y as a function of x near p and

∂y

∂xi
=


∂y1
∂xi
∂y2
∂xi

...
∂yn
∂xi

 = −[Fy]−1Fx(1.5)

One simple example we can think of is the implicit function of n−dimensional
unit sphere Sn.

Sn = {x21 + x22 + · · ·+ x2n − 1 = 0}.(1.6)

We can see that by the implicit function theorem: If Fxi
(p) is non zero for some

i = 1, 2, ..., n, then xi can be written as the function of other variables. So at
p = (0, 0, ..., 1, 0, ..., 0) which has 0 for all but i−th component, Fxk

(p) = 0 for all
k 6= i and Fxi(p) = 2. In this case, we can conclude that xi can be written as a
function of other variables.

2. Proof

Proof. Here we only prove the case that F is a C∞ (This assumption can actually
be changed to F ∈ C1). Also, in our proof, we always write F as a column vector.

Let p = (p1, p2) ∈ Rm+n. for any x ∈ Rm near p1, we can write down following
formula by the error bound estimate.

0 = F (x, y) = F (x, p2) + [Fy](x, p2)(y − p2)t + E2(y)(2.1)

where |E2(y)| ≤ C|y − p2|2.

Recall by the assumption in the statement of Theorem 1.1, the matrix [Fy](p)
is invertible, so for any x which is sufficiently close to p1, [Fy](x, p2) is invertible.
Therefore, we have

(y − p2)t = [Fy]−1(x, p2)F (x, p2) + [Fy]−1(x, p2)E2(y).(2.2)

Not that the last term [Fy]−1(x, p2)E2(y) is still bounded by some C|y − p2|2. We
denote [Fy]−1(x, p2)E2(y) by G(y− p2). So by taking y ∈ Rn also sufficiently close
to p2, we have |G(y − p2)| ≤ 1

100 |y − p2|.

Now, (1.8) implies that

(I −G)(y − p2) = [Fy]−1(x, p2)F (x, p2).(2.3)

Here we claim that (I − G) gives us the 1-1 map near p2. So we can define the
(I − G)(y − p2) = y′ − p2 and obtain the map from x to y′ near the point p.
Therefore, we prove this theorem. �
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To show (I − G) is 1-1, it is actually a implication of a fix point theorem. I
will prove this in a moment. However, we can easily be convinced by this claim,
because I is 1-1 and G is a such small error term.

To prove that I −G is one to one, we can see this from the inequality

|(I −G)(y1 − p2)− (I −G)(y2 − p2)| ≥ |y1 − y)2| − |G||y1 − y2| ≥ |y1 − y2|.
(2.4)

To prove I −G is onto, we take any q near p2 fixed. Then we want to find y such
that

G(y) + q = y.(2.5)

Let us consider Bδ(p2) with δ > 2dist(q, p2). Then G(y) + q ∈ Bδ(p2) for any
y ∈ Bδ(p2). Therefore, if we start with any y0 ∈ Bδ(p2) and consider the sequence

yi = G(yi−1) + q.(2.6)

we can see that |yi − yi+1| ≤ 1
100 |yi−1 − yi|. So {yi} converges to some y with

y = G(y) + q. This proves (1.11)


