
MATH2010E LECTURE 10: ERROR BOUNDS AND TAYLOR’S

FORMULA

1. Error bounds for Taylor’s formula

Let gn : Ω→ R be a sequence two-variable function. Ω is an closed and bounded
set in R2. We call

lim
n→∞

gn(x, y) = 0(1.1)

uniformly on Ω if and only if

lim
n→∞

(
max

(x,y)∈Ω
{|gn(x, y)|}

)
= 0.(1.2)

Now, suppose f is a smooth function and a = (a1, a2) is in the interior of Ω, The
Taylor’s formula will be

∞∑
n=0

n∑
k=0

1

(n− k)!k!

(
∂(n−k)
x ∂k

yg
)

(0)(x− a1)n−k(y − a2)k.(1.3)

We call

Pm(x, y) =

m∑
n=0

n∑
k=0

1

(n− k)!k!

(
∂(n−k)
x ∂k

yg
)

(0)(x− a1)n−k(y − a2)k(1.4)

the m−th order Taylor’s polynomial of f .

We can regard Pm as a approximation of f . Under this setting, one may ask the
error bound estimate for |f − Pm|. This error bound can be controlled as follows:
Let

En(x, y) :=
1

n!
max

(x,y)∈Ω
{|∂n

xf |, |∂(n−1)
x ∂yf |, ..., |∂n

y f |}(|x− a1|2 + |y − a2|2)
n
2 ,(1.5)

Then

|f − Pm|(x, y) ≤ Em+1(x, y).(1.6)

Suppose (1.6) is true, by taking m→∞, we will have the following theorem.

Theorem 1.1. We have

f(x, y) =

∞∑
n=0

n∑
k=0

1

(n− k)!k!

(
∂(n−k)
x ∂k

yg
)

(0)(x− a1)n−k(y − a2)k(1.7)

if and only if limn→∞En(x, y) = 0 uniformly.

Proof. (Under the assumption (1.6))
Notice that

lim
m→∞

Pm(x, y) =

∞∑
n=0

n∑
k=0

1

(n− k)!k!

(
∂(n−k)
x ∂k

yg
)

(0)(x− a1)n−k(y − a2)k.(1.8)
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Suppose limn→∞En(x, y) = 0 uniformly. We have

lim
m→∞

|f − Pm|(x, y) = 0.(1.9)

So (1.7) holds. �

To obtain (1.6), let us denote f(x, y) − Pm(x, y) by g(x, y). So the directional

derivatives D
(k)
~v g(a1, a2) = 0 for any k = 0, ...,m, ~v ∈ R2, |~v| = 1. Here we take

~v = (x−a1,y−a2)√
|x−a1|2+|y−a2|2

and r =
√
|x− a1|2 + |y − a2|2. So

g(x, y) = g(x, y)− g(a1, a2)(1.10)

=

∫ r

0

D~vg(t~v)dt

=

∫ r

0

∫ r1

0

D
(2)
~v g(t~v)dtdr1

= · · ·

=

∫ r

0

∫ r1

0

· · ·
∫ rm

0

D
(m+1)
~v g(t~v)dtdr1 · · · drm

where 0 < r1, r2, ..., rm < r. Meanwhile, one can check that

|D(m+1)
~v g(t~v)| ≤ max

(x,y)∈Ω
{|∂(m+1)

x f |(x, y), |∂m
x ∂yf |(x, y), ..., |∂(m+1)

y f |(x, y)}.(1.11)

So ∫ r

0

∫ r1

0

· · ·
∫ rm

0

D
(m+1)
~v g(t~v)dtdr1 · · · drm(1.12)

≤ max
(x,y)∈Ω

{|∂m
x f |, |∂(m−1)

x ∂yf |, ..., |∂m
y f |} 1

(m + 1)!
(|x− a1|2 + |y − a2|2)

m+1
2

=Em+1(x, y).(1.13)

Example. Let f(x, y) = sin(x+3y) and Pm be the Taylor’s polynomial centred on

(0, 0). Find m ∈ N such that |f(x, y)−Pm(x, y)| ≤ 10−5 for all (x, y),
√
x2 + y2 < 1.

To find m, we notice that ∂xf = cos(x + 3y), ∂yf = 3 cos(x + 3y). This implies

max
(x,y),
√

x2+y2<1

{|∂xf |, |∂yf |} = 3.(1.14)

Inductively, we have

max
(x,y),
√

x2+y2<1

{|∂m
x f |, |∂(m−1)

x ∂yf |, ..., |∂m
y f |} = 3m.(1.15)

So

|Em(x, y)| ≤ 3m

m!
(1.16)

Clearly we have 330

30! ≤
3
30 = 1

10 . So we can take m = 34.

Remember that the choice of m is not unique. One can choose any m > 34 such
that the estimate

|f(x, y)− Pm(x, y)| ≤ 10−5
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holds. 34 itself is not actually the smallest (best) candidate. In fact, one can easily
check by using a calculator (or hands) that m = 19 is enough in this case.


