MATH1010 University Mathematics
Limits of sequences
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2. Leta, = —+ + +- . Prove that a,, is convergent
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and lim a, > 0.
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3. Prove that k(n — k+ 1) > n for any 1 < k < n. Hence prove that
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Solution:
1. For any n=1,2,3,..., we have
0 < ¢ L Loy 1
n+1 n?2+2 n?2+3 n?+n
< 1 1 1 1
< ﬁ-l-ﬁ—i-ﬁ—f----—l-ﬁ
1
T on
Now
o1
lim — = 0.
n—oo M,

By squeeze theorem, we have

i L -+ ! + ! -+ + 1 0
im oot —— ) =0.
nsoo\n2+1 n2+2 n2+3 n?+n

2. Observe that
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Thus a,, is strictly decreasing. Now
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It follows by monotone convergence theorem that a, is convergent.
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Moreover we have lim aq, > = > 0.
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Remark: It can be proved that lim a, = In2 =~ 0.6931.
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. For any 1 < k£ < n, we have
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Hence for any positive integer n,
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It follows by squeeze theorem that
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