WEEK 9. TAYLOR SERIES

1. Definition of Taylor Series

Let us recall the definition of Taylor polynomial.

Definition 1.1. Suppose a function f is (n + 1)-times differentiable at a point a. The *n*-th Taylor polynomial of f at a is a polynomial of degree n defined by

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k.$$

The difference $f(x) - P_n(x)$ between f(x) and $P_n(x)$ is called the <u>*n*-th remainder term</u> and is denoted by $R_n(x)$.

Theorem 1.1 (Taylor Theorem). Let f be a function that is (n+1)-times differentiable on an open neighborhood I containing a point a. For any $x \in I$, there exists a number c between a and x such that

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$

In terms of the remainder term, the Taylor theorem says that there exists some c between a and x such that

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}.$$

Observation. For a fixed x such that |x - a| is small enough, the remainder term $R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$ converges to zero as n tends to infinity in many cases. For instance, consider a function $f(x) = e^x$.

Then its *n*-th Taylor polynomial at 0 is $P_n(x) = \sum_{k=0}^n \frac{1}{k!} x^k$ and *n*-th remainder term is given by $R_n(x) = \frac{e^c}{(n+1)!} x^{n+1}$ for some *c* between 0 and *x* because $f^{(n+1)}(x) = e^x$ for all *n*. Now let's fix a real number x.

Then the value e^c is bounded above by some positive number M because c lies between 0 and x. Furthermore, $\frac{x^{n+1}}{(n+1)!}$ converges to zero as n tends to infinity because the factorial function grows much faster than any polynomial.

Finally, since $0 \le |R_n(x)| = |e^c \frac{x^{n+1}}{(n+1)!}| \le M |\frac{x^{n+1}}{(n+1)!}|$, we have

$$\lim_{n \to \infty} |R_n(x)| = 0.$$

Hence, $P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k$ converges to e^x as n tends to infinity.

As a consequence, it seems reasonable to consider the infinite sum

$$\lim_{n \to \infty} P_n(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k.$$

This will be called the Taylor series of f.

Definition 1.2 (Power Series). A power series S(x) (centered) at a is an infinite sum of the form

$$S(x) = \sum_{k=0}^{\infty} a_k (x-a)^k.$$

The following theorem explains a basic property of power series.

Theorem 1.2. Let $S(x) = \sum_{k=0}^{\infty} a_k (x-a)^k$ be a power series centered at a. Then there exists $R \ge 0$ such that S(x) converges if a - R < x < a + R and diverges if x > a + R or x < a - R.

Such a number R is called the radius of convergence of the power series S(x).

Example 1.1. Consider a power series

$$S(x) = \sum_{k=0}^{\infty} x^k.$$

Then, S(x) converges if -1 < x < 1 and diverges if x > 1 or x < -1. Indeed, for any $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} x^{k} = 1 + x + \dots + x^{n} = \frac{1 - x^{n+1}}{1 - x}.$$

 $\mathbf{2}$

Hence, if -1 < x < 1, then

$$\lim_{n \to \infty} \sum_{k=0}^{n} x^{k} = \lim_{n \to \infty} \frac{1 - x^{n+1}}{1 - x} = \frac{1}{1 - x}$$

But, if x > 1 or x < -1, then

$$\lim_{n \to \infty} \sum_{k=0}^{n} x^{k} = \lim_{n \to \infty} \frac{1 - x^{n+1}}{1 - x} = \pm \infty.$$

Hence, 1 is the radius of convergence of the power series $S(x) = \sum_{k=0}^{\infty} x^k$.

As mentioned above,

Definition 1.3 (Taylor Series). Let f be a function that is infinitely many times differentiable at a point a. The <u>Taylor series of f (centered) at a is a power series defined by</u>

$$T(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k.$$

For a function f that is infinitely many times differentiable at a, there exists an interval I centered at a on which f(x) and T(x) are equal.

Example 1.2. The following table shows the Taylor series of some functions at 0. Let T(x) denote the Taylor series of f(x) at 0.

 f(x)	T(x)	The interval where $f(x) = T(x)$
e^x	$\sum_{k=0}^{\infty} \frac{1}{k!} x^k$	\mathbb{R}
$\cos x$	$\sum_{k=0}^{\infty} \frac{1}{k!} x^{k}$ $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2k)!} x^{2k}$ $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2k+1)!} x^{2k+1}$ $\sum_{k=0}^{\infty} x^{k}$	\mathbb{R}
$\sin x$	$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$	\mathbb{R}
$\frac{1}{1-x}$	$\sum_{k=0} x^{k}$	(-1, 1)
$\ln(1+x)$	$\sum_{k=0}^{\infty} \frac{\frac{(-1)^k}{k+1}}{\frac{k+1}{k+1}} x^{k+1}$ $\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1}$	(-1, 1]
$\arctan x$	$\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1}$	(-1, 1)

In contrast, there is a function such that it coincides with its Taylor series only at the center.

Example 1.3. Consider a function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} e^{-\frac{1}{|x|}} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Then one can show that f is infinitely many times differentiable at 0 and $f^{(n)}(0) = 0$ for all $n \in \mathbb{N}$. Therefore the Taylor polynomial of f at 0 is given by

$$T(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = 0.$$

Hence, f(x) = T(x) only at x = 0, the center of the Taylor series.

2. Techniques for computing Taylor series

Theorem 2.1. Let $S(x) = \sum_{k=0}^{\infty} a_k (x-a)^k$ be a power series that converges on an open interval of the form (a-r, a+r) for some r > 0, then S(x) is differentiable on (a-r, a+r) and

$$S'(x) = \sum_{k=1}^{\infty} k a_k (x-a)^{k-1}.$$

Corollary 2.2. Suppose

$$f(x) = \sum_{k=0}^{\infty} a_k (x-a)^k$$

on an open interval I containing a. Then $\sum_{k=0}^{\infty} a_k (x-a)^k$ is the Taylor series of f(x) at a, i.e. $a_n = \frac{f^{(n)}(a)}{n!}$.

Proof of Corollary 2.2. Since I is an open interval, there exists a small r > 0 such that $(a - r, a + r) \subseteq I$.

First observe that

$$f(a) = \sum_{k=0}^{\infty} a_k (a-a)^k$$

= $a_0 + a_1 \cdot 0^1 + a_2 \cdot 0^2 + \dots$
= a_0 .

Hence, $a_0 = f(a)$.

By Theorem 2.1, f(x) is differentiable at 0 and

$$f'(x) = \sum_{k=1}^{\infty} k a_k (x-a)^{k-1}.$$

Hence, we have

$$f'(a) = \sum_{k=1}^{\infty} k a_k (a-a)^{k-1}$$

= 1 \cdot a_1 + 2 \cdot a_2 \cdot 0^1 + 3 \cdot a_3 \cdot 0^2 + ...
= a_1.

Hence, $a_1 = f'(a)$.

Again, we apply Theorem 2.1 to f'(x) again. Then we get

$$f''(x) = \sum_{k=2}^{\infty} k(k-1)a_k(x-a)^{k-2}.$$

As above, we have

$$f''(a) = \sum_{k=2}^{\infty} k(k-1)a_k(a-a)^{k-2}$$

= 2 \cdot 1 \cdot a_2 + 3 \cdot 2 \cdot a_3 \cdot 0^1 + 4 \cdot 3 \cdot a_4 \cdot 0^2 + \dots
= 2a_2.

Hence, $a_2 = \frac{f^{(2)}(a)}{2!}$.

Continuing this way, it is possible to show that

$$a_n = \frac{f^{(n)}(a)}{n!}.$$

for all $n \ge 0$.

Hence the power series $\sum_{k=0}^{\infty} a_k (x-a)^k$ is the Taylor series of f at a.

Example 2.1. On the interval (-1, 1), we have the following equality:

$$\ln(1+x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1} x^{k+1}.$$

Differentiating both sides of above equality, we have the equality

$$\frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^k x^k.$$

on (-1, 1).

Differentiating both sides of above equality again. we have the equality

$$-\frac{1}{(1+x)^2} = \sum_{k=1}^{\infty} (-1)^k k x^{k-1}.$$

on (-1, 1).

Theorem 2.3 (Generalized Binomial Theorem). For any $r \in \mathbb{R}$, we have the following equality:

$$(1+x)^r = \sum_{k=0}^{\infty} \binom{r}{k} x^k,$$

for any $x \in (-1,1)$. Here, $\binom{r}{k}$ is defined by
$$\frac{r(r-1)...(r-k)}{k!}.$$

Applying Corollary 2.2 to above equality, we observe that $\sum_{k=0}^{\infty} \binom{r}{k} x^k$ is the Taylor series of $(1+x)^r$ at 0.

Exercise 2.1. Find the Taylor series of the following function f(x) at a.

1. $f(x) = \sin 3x, a = 0$ 2. $f(x) = \cos x, a = \frac{\pi}{2}$ 3. $f(x) = \frac{1}{2-x}, a = 0$ 4. $f(x) = \frac{1}{2-x}, a = 1$ 5. $f(x) = \frac{1}{1+x^2}, a = 0$ 6. $f(x) = \frac{-2x}{(1+x^2)^2}, a = 0$ 7. $f(x) = \sqrt{1-2x}, a = 0$ 8. $f(x) = \ln(1+x^2), a = 0$ Answer :

1.

$$\sum_{k=0}^{\infty} \frac{(-1)^k 3^{2k+1}}{(2k+1)!} x^{2k+1}.$$

 \therefore Consider the substitution t = 3x. Then we have an equality

$$\sin t = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} t^{2k+1}$$

for any $t = 3x \in \mathbb{R}$.

Hence,

$$\sin 3x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} (3x)^{2k+1}$$

for any $x \in \mathbb{R}$.

By Corollary 2.2, we conclude hat $\sum_{k=0}^{\infty} \frac{(-1)^k 3^{2k+1}}{(2k+1)!} x^{2k+1}$ is the Taylor series of $\sin 3x$ at 0.

2.

$$\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} (x - \frac{\pi}{2})^{2k+1}$$

 \therefore Consider the equality

$$\cos x = -\sin(x - \frac{\pi}{2}) = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} (x - \frac{\pi}{2})^{2k+1}.$$

for any $x \in \mathbb{R}$.

By Corollary 2.2, we conclude that $\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} (x-\frac{\pi}{2})^{2k+1}$ is the Taylor series of $\cos x$ at $\frac{\pi}{2}$.

3.

$$\sum_{k=0}^{\infty} \frac{1}{2^{k+1}} x^k.$$

 \therefore Consider the equality

$$\frac{1}{2-x} = \frac{1}{2} \frac{1}{1-\frac{x}{2}} = \sum_{k=0}^{\infty} \frac{1}{2^{k+1}} x^k$$

for any $x \in (-2, 2)$. Now apply Corollary 2.2.

4.

$$\sum_{k=0}^{\infty} (x-1)^k.$$

 \therefore Consider the equality

$$\frac{1}{2-x} = \frac{1}{1-(x-1)} = \sum_{k=0}^{\infty} (x-1)^k$$

for any $x \in (0, 2)$. Now apply Corollary 2.2.

5.

$$\sum_{k=0}^{\infty} (-1)^k x^{2k}.$$

 \therefore Consider the equality

$$\frac{1}{1+x^2} = \sum_{k=0}^{\infty} (-1)^k x^{2k}$$

for any $x \in (-1, 1)$. Now apply Corollary 2.2.

6.

$$\sum_{k=0}^{\infty} 2k(-1)^k x^{2k-1}.$$

: Differentiate both sides of the equality $\frac{1}{1+x^2} = \sum_{k=0}^{\infty} (-1)^k x^{2k}$. Then we get an equality

$$\frac{-2x}{(1+x^2)^2} = \sum_{k=0}^{\infty} 2k(-1)^k x^{2k-1}$$

on (-1, 1). Now apply Corollary 2.2.

8

7.

$$\sum_{k=0}^{\infty} (-2)^k \begin{pmatrix} \frac{1}{2} \\ k \end{pmatrix} x^k.$$

: Consider the substitution t = -2x and apply the generalized binomial theorem and Corollary 2.2.

8.

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{k+1} x^{2k}.$$

 \therefore Consider the substitution $t = x^2$ and the equality

$$\ln(1+x^2) = \ln(1+t) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1} t^k = \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1} x^{2k}$$

for any $x \in (-1, 1)$. Now apply Corollary 2.2.

Exercise 2.2. Answer the following

a. Consider a function $f:(-1,1)\to \mathbb{R}$ defined by

$$f(x) = \sum_{k=1}^{\infty} k x^k.$$

Evaluate $f(\frac{1}{2})$. (Hint : Consider the equality $\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k$ on (-1, 1).)

b. Consider a function $g:(-1,1)\to \mathbb{R}$ defined by

$$g(x) = \sum_{k=1}^{\infty} k^2 x^k.$$

Evaluate $g(\frac{1}{2})$.

Answer : $f(\frac{1}{2}) = 2$ and $g(\frac{1}{2}) = 6$.