
WEEK 9. TAYLOR SERIES

1. Definition of Taylor series

Let us recall the definition of Taylor polynomial.

Definition 1.1. Suppose a function f is (n + 1)-times differentiable at a point a.

The n-th Taylor polynomial of f at a is a polynomial of degree n defined by

Pn(x) =
n∑
k=0

f (k)(a)

k!
(x− a)k.

The difference f(x)−Pn(x) between f(x) and Pn(x) is called the n-th remainder term

and is denoted by Rn(x).

Theorem 1.1 (Taylor Theorem). Let f be a function that is (n+ 1)-times differen-

tiable on an open neighborhood I containing a point a. For any x ∈ I, there exists

a number c between a and x such that

f(x) =
n∑
k=0

f (k)(a)

k!
(x− a)k +

f (n+1)(c)

(n+ 1)!
(x− a)n+1

In terms of the remainder term, the Taylor theorem says that there exists some c

between a and x such that

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1.

Observation. For a fixed x such that |x − a| is small enough, the remainder term

Rn(x) = f (n+1)(c)
(n+1)! (x− a)n+1 converges to zero as n tends to infinity in many cases.

For instance, consider a function f(x) = ex.

Then its n-th Taylor polynomial at 0 is Pn(x) =
∑n

k=0
1
k!x

k and n-th remainder

term is given by Rn(x) = ec

(n+1)!x
n+1 for some c between 0 and x because f (n+1)(x) =

ex for all n.
1
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Now let’s fix a real number x.

Then the value ec is bounded above by some positive number M because c lies

between 0 and x. Furthermore, xn+1

(n+1)! converges to zero as n tends to infinity because

the factorial function grows much faster than any polynomial.

Finally, since 0 ≤ |Rn(x)| = |ec xn+1

(n+1)! | ≤M |
xn+1

(n+1)! |, we have

lim
n→∞

|Rn(x)| = 0.

Hence, Pn(x) =
∑n

k=0
f (k)(0)
k! xk converges to ex as n tends to infinity.

As a consequence, it seems reasonable to consider the infinite sum

lim
n→∞

Pn(x) =
∞∑
k=0

f (k)(a)

k!
(x− a)k.

This will be called the Taylor series of f .

Definition 1.2 (Power Series). A power series S(x) (centered) at a is an infinite

sum of the form

S(x) =
∞∑
k=0

ak(x− a)k.

The following theorem explains a basic property of power series.

Theorem 1.2. Let S(x) =
∑∞

k=0 ak(x− a)k be a power series centered at a. Then

there exists R ≥ 0 such that S(x) converges if a − R < x < a + R and diverges if

x > a+R or x < a−R.

Such a number R is called the radius of convergence of the power series S(x).

Example 1.1. Consider a power series

S(x) =
∞∑
k=0

xk.

Then, S(x) converges if −1 < x < 1 and diverges if x > 1 or x < −1.

Indeed, for any n ∈ N,

n∑
k=0

xk = 1 + x+ ...+ xn =
1− xn+1

1− x
.
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Hence, if −1 < x < 1, then

lim
n→∞

n∑
k=0

xk = lim
n→∞

1− xn+1

1− x
=

1

1− x
.

But, if x > 1 or x < −1, then

lim
n→∞

n∑
k=0

xk = lim
n→∞

1− xn+1

1− x
= ±∞.

Hence, 1 is the radius of convergence of the power series S(x) =
∑∞

k=0 x
k.

As mentioned above,

Definition 1.3 (Taylor Series). Let f be a function that is infinitely many times

differentiable at a point a. The Taylor series of f (centered) at a is a power series

defined by

T (x) =
∞∑
k=0

f (k)(a)

k!
(x− a)k.

For a function f that is infinitely many times differentiable at a, there exists an

interval I centered at a on which f(x) and T (x) are equal.

Example 1.2. The following table shows the Taylor series of some functions at 0.

Let T (x) denote the Taylor series of f(x) at 0.

f(x) T (x) The interval where f(x) = T (x)

ex
∞∑
k=0

1

k!
xk R

cosx

∞∑
k=0

(−1)k

(2k)!
x2k R

sinx

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1 R

1
1−x

∞∑
k=0

xk (−1, 1)

ln(1 + x)
∞∑
k=0

(−1)k

k + 1
xk+1 (−1, 1]

arctanx
∞∑
k=0

(−1)k

2k + 1
x2k+1 (−1, 1)
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In contrast, there is a function such that it coincides with its Taylor series only

at the center.

Example 1.3. Consider a function f : R→ R defined by

f(x) =

e
− 1

|x| if x 6= 0,

0 if x = 0.

Then one can show that f is infinitely many times differentiable at 0 and f (n)(0) =

0 for all n ∈ N. Therefore the Taylor polynomial of f at 0 is given by

T (x) =
∞∑
k=0

f (k)(0)

k!
xk = 0.

Hence, f(x) = T (x) only at x = 0, the center of the Taylor series.

2. Techniques for computing Taylor series

Theorem 2.1. Let S(x) =
∑∞

k=0 ak(x− a)k be a power series that converges on an

open interval of the form (a − r, a + r) for some r > 0, then S(x) is differentiable

on (a− r, a+ r) and

S′(x) =

∞∑
k=1

kak(x− a)k−1.

Corollary 2.2. Suppose

f(x) =
∞∑
k=0

ak(x− a)k

on an open interval I containing a. Then
∑∞

k=0 ak(x − a)k is the Taylor series of

f(x) at a, i.e. an = f (n)(a)
n! .

Proof of Corollary 2.2. Since I is an open interval, there exists a small r > 0 such

that (a− r, a+ r) ⊆ I.
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First observe that

f(a) =
∞∑
k=0

ak(a− a)k

= a0 + a1 · 01 + a2 · 02 + ...

= a0.

Hence, a0 = f(a).

By Theorem 2.1, f(x) is differentiable at 0 and

f ′(x) =

∞∑
k=1

kak(x− a)k−1.

Hence, we have

f ′(a) =
∞∑
k=1

kak(a− a)k−1

= 1 · a1 + 2 · a2 · 01 + 3 · a3 · 02 + ...

= a1.

Hence, a1 = f ′(a).

Again, we apply Theorem 2.1 to f ′(x) again. Then we get

f ′′(x) =
∞∑
k=2

k(k − 1)ak(x− a)k−2.

As above, we have

f ′′(a) =

∞∑
k=2

k(k − 1)ak(a− a)k−2

= 2 · 1 · a2 + 3 · 2 · a3 · 01 + 4 · 3 · a4 · 02 + ...

= 2a2.

Hence, a2 = f (2)(a)
2! .
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Continuing this way, it is possible to show that

an =
f (n)(a)

n!
.

for all n ≥ 0.

Hence the power series
∑∞

k=0 ak(x− a)k is the Taylor series of f at a. �

Example 2.1. On the interval (−1, 1), we have the following equality:

ln(1 + x) =

∞∑
k=0

(−1)k

k + 1
xk+1.

Differentiating both sides of above equality, we have the equality

1

1 + x
=
∞∑
k=0

(−1)kxk.

on (−1, 1).

Differentiating both sides of above equality again. we have the equality

− 1

(1 + x)2
=
∞∑
k=1

(−1)kkxk−1.

on (−1, 1).

Theorem 2.3 (Generalized Binomial Theorem). For any r ∈ R, we have the fol-

lowing equality:

(1 + x)r =

∞∑
k=0

r
k

xk,

for any x ∈ (−1, 1). Here,

r
k

 is defined by

r(r − 1)...(r − k)

k!
.

Applying Corollary 2.2 to above equality, we observe that

∞∑
k=0

r
k

xk is the

Taylor series of (1 + x)r at 0.
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Exercise 2.1. Find the Taylor series of the following function f(x) at a.

1. f(x) = sin 3x, a = 0

2. f(x) = cosx, a = π
2

3. f(x) = 1
2−x , a = 0

4. f(x) = 1
2−x , a = 1

5. f(x) = 1
1+x2

, a = 0

6. f(x) = −2x
(1+x2)2

, a = 0

7. f(x) =
√

1− 2x, a = 0

8. f(x) = ln(1 + x2), a = 0

Answer :

1.
∞∑
k=0

(−1)k32k+1

(2k + 1)!
x2k+1.

∵ Consider the substitution t = 3x. Then we have an equality

sin t =
∞∑
k=0

(−1)k

(2k + 1)!
t2k+1

for any t = 3x ∈ R.

Hence,

sin 3x =
∞∑
k=0

(−1)k

(2k + 1)!
(3x)2k+1

for any x ∈ R.

By Corollary 2.2, we conclude hat
∑∞

k=0
(−1)k32k+1

(2k+1)! x2k+1 is the Taylor series of

sin 3x at 0.

2.
∞∑
k=0

(−1)k+1

(2k + 1)!
(x− π

2
)2k+1

∵ Consider the equality

cosx = − sin(x− π

2
) =

∞∑
k=0

(−1)k+1

(2k + 1)!
(x− π

2
)2k+1.

for any x ∈ R.
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By Corollary 2.2, we conclude that
∑∞

k=0
(−1)k+1

(2k+1)! (x− π
2 )2k+1 is the Taylor series

of cosx at π
2 .

3.
∞∑
k=0

1

2k+1
xk.

∵ Consider the equality

1

2− x
=

1

2

1

1− x
2

=

∞∑
k=0

1

2k+1
xk

for any x ∈ (−2, 2). Now apply Corollary 2.2.

4.
∞∑
k=0

(x− 1)k.

∵ Consider the equality

1

2− x
=

1

1− (x− 1)
=
∞∑
k=0

(x− 1)k

for any x ∈ (0, 2). Now apply Corollary 2.2.

5.
∞∑
k=0

(−1)kx2k.

∵ Consider the equality

1

1 + x2
=
∞∑
k=0

(−1)kx2k

for any x ∈ (−1, 1). Now apply Corollary 2.2.

6.
∞∑
k=0

2k(−1)kx2k−1.

∵ Differentiate both sides of the equality 1
1+x2

=
∑∞

k=0(−1)kx2k. Then we get an

equality

−2x

(1 + x2)2
=

∞∑
k=0

2k(−1)kx2k−1

on (−1, 1). Now apply Corollary 2.2.
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7.
∞∑
k=0

(−2)k

1
2

k

xk.

∵ Consider the substitution t = −2x and apply the generalized binomial theorem

and Corollary 2.2.

8.
∞∑
k=0

(−1)k

k + 1
x2k.

∵ Consider the substitution t = x2 and the equality

ln(1 + x2) = ln(1 + t) =

∞∑
k=0

(−1)k

k + 1
tk =

∞∑
k=0

(−1)k

k + 1
x2k

for any x ∈ (−1, 1). Now apply Corollary 2.2.

Exercise 2.2. Answer the following

a. Consider a function f : (−1, 1)→ R defined by

f(x) =
∞∑
k=1

kxk.

Evaluate f(12). (Hint : Consider the equality 1
1−x =

∑∞
k=0 x

k on (−1, 1).)

b. Consider a function g : (−1, 1)→ R defined by

g(x) =
∞∑
k=1

k2xk.

Evaluate g(12).

Answer : f(12) = 2 and g(12) = 6.
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