WEEK 9. TAYLOR SERIES

1. DEFINITION OF TAYLOR SERIES

Let us recall the definition of Taylor polynomial.

Definition 1.1. Suppose a function f is (n + 1)-times differentiable at a point a.

The n-th Taylor polynomial of f at a is a polynomial of degree n defined by

n o pk) (g
Pn(x)zzf ()(:c—a)k.

[
Pt k!

The difference f(x)—P,(x) between f(x) and P, (z) is called the n-th remainder term
and is denoted by R, (z).

Theorem 1.1 (Taylor Theorem). Let f be a function that is (n+ 1)-times differen-
tiable on an open meighborhood I containing a point a. For any x € I, there exists

a number ¢ between a and x such that

n+1

- f(a) FeH(e)
f(x)—kzzo o (x—a)hrm(x—a)

In terms of the remainder term, the Taylor theorem says that there exists some c

between a and x such that

B f(n+1)(c)

Rn(l') = m n+l

(z —a)

Observation. For a fixed x such that |z — a| is small enough, the remainder term

(n+1) . o
R, (z) = f(n+1)(!6) (x — a)"! converges to zero as n tends to infinity in many cases.

For instance, consider a function f(z) = e*.

Then its n-th Taylor polynomial at 0 is P, (z) = Y ,_, %mk and n-th remainder

term is given by R, (x) = icl)!xnﬂ for some ¢ between 0 and 2 because "+ (z) =

(n

e® for all n.
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Now let’s fix a real number x.
Then the value e® is bounded above by some positive number M because c lies

between 0 and x. Furthermore, ), converges to zero as n tends to infinity because

( +1
the factorial function grows much faster than any polynomial.
. . n+1
Finally, since 0 < |R,,(z)| = |e° (== | < M’(n—i—l |, we have
Jim [R(2)] = 0.

(k)
Hence, Py(z) =Y 1, 2O 2k converges to e as n tends to infinity.

As a consequence, it seems reasonable to consider the infinite sum
lim P, ( E
n—oo

This will be called the Taylor series of f.

(z —a)*.

Definition 1.2 (Power Series). A power series S(z) (centered) at a is an infinite

sum of the form .
x) = Zak(x —a)®
k=0

The following theorem explains a basic property of power series.

Theorem 1.2. Let S(x) = 372 ar(x — a)* be a power series centered at a. Then
there exists R > 0 such that S(x) converges if a — R < x < a + R and diverges if
r>a+ R orx<a—R.

Such a number R is called the radius of convergence of the power series S(x).

Example 1.1. Consider a power series

o0
T) = Z .
k=0

Then, S(x) converges if —1 < z < 1 and diverges if x > 1 or x < —1.
Indeed, for any n € N,

1— xn—i—l

n
Zxkzl—i—x—i—...—i—x"—
k=0

1—=x
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Hence, if —1 < x < 1, then

n
1— xn—‘rl 1
lim 2" = lim = .
n—00 n—soco 1 —21x 1—=x
k=0
But, if z > 1 or z < —1, then
n
1— wnJrl
lim 2 = lim ———— = 400.
n—00 n—oo 1 —x

k=0

Hence, 1 is the radius of convergence of the power series S(z) = >"72, k.
As mentioned above,

Definition 1.3 (Taylor Series). Let f be a function that is infinitely many times
differentiable at a point a. The Taylor series of f (centered) at a is a power series

defined by

= M) (a
= kzo k:'( )(:1: — a)k.

For a function f that is infinitely many times differentiable at a, there exists an

interval I centered at a on which f(x) and T'(z) are equal.

Example 1.2. The following table shows the Taylor series of some functions at 0.

Let T'(z) denote the Taylor series of f(z) at 0.

fx) T(a:) The interval where f(z) = T'(z)
T 1 k
e k‘ R
COST Z R
k=0
. — (-1 L2+
sinz Z 2k + 01 R
k::O o
= > (=1,1)
k=0
In(1 + z) i (_1)kx’f+1 (-1,1]
k+1 ’
k=0 .
o (=1 o
t —-1,1
arctan 22kt (—-1,1)
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In contrast, there is a function such that it coincides with its Taylor series only

at the center.

Example 1.3. Consider a function f : R — R defined by

1
e =l if x #£0,
flz) =
0 if z =0.
Then one can show that f is infinitely many times differentiable at 0 and £ (0) =
0 for all n € N. Therefore the Taylor polynomial of f at 0 is given by

< f(k)
T(x) = Z ! k!(O) % = 0.
k=0

Hence, f(z) = T'(x) only at = = 0, the center of the Taylor series.

2. TECHNIQUES FOR COMPUTING TAYLOR SERIES

Theorem 2.1. Let S(z) = > 32, ar(z — a)¥ be a power series that converges on an
open interval of the form (a — r,a + 1) for some r > 0, then S(x) is differentiable

on (a—r,a+r) and

S'(x) = Z kay(z — a)k~L.
k=1

Corollary 2.2. Suppose
f@)=> ap(z—a)
k=0

on an open interval I containing a. Then Y~ ax(x — a)k is the Taylor series of

f(z) ata, e ap= Lo

Proof of Corollary 2.2. Since I is an open interval, there exists a small r > 0 such

that (a —r,a+7r) C I.
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First observe that

:ao+a1-01+a2-02+...

= ap.

Hence, ag = f(a).

By Theorem 2.1, f(z) is differentiable at 0 and
f(z) = Z kag(z — a)* 1.
k=1
Hence, we have
flla) =) kag(a—a)*

k=1

=1-a1+2-a-0"+3 a3-0°+...

=aj.

Hence, a1 = f'(a).
Again, we apply Theorem 2.1 to f'(z) again. Then we get

o0

f(x) = k(k — Dag(z — a)2.

k=2

As above, we have

1) = 3" k(k — Dag(a — a)*~?
k=2

=2-1-a34+3-2-a3-0'+4-3-a4-0%>+ ...

= 2as.

Hence, ao = fT()
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Continuing this way, it is possible to show that

(n)
o @
n!
for all n > 0.
Hence the power series Y, ap(z — a)¥ is the Taylor series of f at a. O

Example 2.1. On the interval (—1, 1), we have the following equality:

In(1+z) = i (_1)kxk+1.

on (—1,1).

Differentiating both sides of above equality again. we have the equality

1 > _
T T 2V

on (—1,1).

Theorem 2.3 (Generalized Binomial Theorem). For any r € R, we have the fol-

lowing equality:

o0

+zy =[]

k=0 k

-
for any x € (—1,1). Here, is defined by
k

r(r—1)..(r — k)
k! '

o
r
Applying Corollary 2.2 to above equality, we observe that Z z¥ is the

k=0
Taylor series of (1 + x)" at 0.
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Exercise 2.1. Find the Taylor series of the following function f(x) at a.

1. f(x) =sin3z,a=0

2. f(x) =cosz,a =73

3. f(z) = 5—,a=0

4. f(z) = 7,a=

5 f(x)—ﬁ,a 0

6. f(z) = (llig)g,a:0
7. f(x) =1 -2x,a=

8. flx)=In(1+2%),a=0
Answer

o 1)k32k+1

jz:(zék+-1ﬂ .

k=0
*.» Consider the substitution ¢ = 3x. Then we have an equality

int ( 1)k t2k+1
St = —
|
Z;@k+n.

for any t = 3z € R.

Hence,

R N G 2k+1
sin 3x = kz m(gl')
=0

for any = € R.
(ZDF32EH okt1

By Corollary 2.2, we conclude hat >~ 72, CIESY I is the Taylor series of
sin3z at 0.
2.
i kH §)2k+1
k:O (2k —|— 1)! 2
" Consider the equality
S kH T\2k+1
cosz = —sin(x ; 2k+1 5) .

for any = € R.
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1)k+1

By Corollary 2.2, we conclude that ) 7° 2k+1) r(z — Z)?**1 is the Taylor series

of cosx at %

3.
00

1

k=0
" Consider the equality

1
Q—x

=1
=D ot

k=0

l\.')\ —
w\a

for any = € (—2,2). Now apply Corollary 2.2.
4.
o

Z:L‘—l

k=0

" Consider the equality

1 o0
1-(z—1) =2 @1

271:
k=0

for any = € (0,2). Now apply Corollary 2.2.

5.
o0
Z(—l)kx2k.
k=0
*.» Consider the equality
1 o0
1+a22 > (=D)fa?
k=0

for any x € (—1,1). Now apply Corollary 2.2.

D 2k(—1)Fa? 1
k=0

.- Differentiate both sides of the equality 5 Jrle

1+ 2 sz k 2]671
Xz

n (—1,1). Now apply Corollary 2.2.

6.

S o(=1)*2% . Then we get an

equality
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7.
00 1
2(72)’6 2 .’Ek
k=0 k
-.» Consider the substitution ¢ = —2z and apply the generalized binomial theorem
and Corollary 2.2.
8. -
Z (=1)F 22k
prd E+1

- Consider the substitution ¢t = 22 and the equality

2 (—1)k —1)k
In(1+2?) =In(1 +¢t) = th = 2k
n(1 + 2?) = In(1 +¢) kzo - ];)k+1a:

—~
—

-~

for any « € (—1,1). Now apply Corollary 2.2.

Exercise 2.2. Answer the following

a. Consider a function f: (—1,1) — R defined by

k=1

Evaluate f(1). (Hint : Consider the equality 2= = >3 2% on (—1,1).)
b. Consider a function g : (—1,1) — R defined by

o

g(z) = Z K22k,

k=1

Evaluate g(3).
Answer : f(3) =2 and g(3) = 6.
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