
WEEK 13. FUNDAMENTAL THEOREM OF CALCULUS

1. Fundamental Theorem of Calculus

Let us recall the mean value theorem for integrals.

Theorem 1.1 (Mean Value Theorem for integrals). Let f : [a, b]→ R be a contin-

uous function.

Then there is a number c ∈ [a, b] such that

f(c) =
1

b− a

∫ b

a
f(x)dx.

Now we are ready to prove the following theorem:

Theorem 1.2 (Fundamental Theorem of Calculus, Part 1). Let f : [a, b]→ R be a

continuous function.

Define a function F : [a, b]→ R by

F (x) =

∫ x

a
f(t)dt.

Then the function F is continuous on [a, b] and differentiable on (a, b).

Furthermore, we have F ′(x) = f(x) for all x ∈ (a, b).

Proof. Let x ∈ (a, b). Then for a sufficiently small real number h,

F (x+ h)− F (x) =

∫ x+h

a
f(t)dt−

∫ x

a
f(t)dt

=

∫ x+h

x
f(t)dt

= f(ch)(x+ h− x)

= f(ch)h.

for some ch between x and x+ h by mean value theorem for integrals.
1
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Because ch lies between x and x+h, ch approaches to x as h→ 0. Thus, we have

lim
h→0

F (x+ h)− F (x)

h
= lim

h→0
f(ch) = f(x)

because f is continuous on [a, b].

Hence the function F is differentiable at x ∈ (a, b) and F ′(x) = f(x).

For continuity, note that |f(x)| ≤ M for some real number M because f is

continuous on [a, b]. Therefore, the equality F (x+ h)−F (x) = f(ch)h (for some ch

between x and x+ h) implies that

|F (x+ h)− F (x)| ≤M |h|

and hence

lim
h→0

F (x+ h) = F (x).

Hence the function F is continuous on [a, b]. �

Another way to state the above theorem is

d

dx

∫ x

a
f(t)dt = f(x).

Corollary 1.3. For any continuous function f : [a, b] → R and any differentiable

functions g, h that take values in [a, b], we have

d

dx

∫ h(x)

g(x)
f(t)dt = f(h(x))h′(x)− f(g(x))g′(x).

Proof. Define a function F by F (x) =
∫ x
a f(t)dt as above. Then we have seen that

F ′(x) = f(x).

Then we have ∫ h(x)

g(x)
f(t)dt =

∫ h(x)

a
f(t)dt−

∫ g(x)

a
f(t)dt

= F (h(x))− F (g(x)).
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Hence we have

d

dx

∫ h(x)

g(x)
f(t)dt =

d

dx
(F (h(x))− F (g(x)))

= F ′(h(x))h′(x)− F ′(g(x))g′(x)

= f(h(x))h′(x)− f(g(x))g′(x).

�

Example 1.1. Evaluate dy
dx for the following functions y.

(1) y =
∫ x
0 (t4 + 1)3dt.

(2) y =
∫ 3
x 3t2 sin tdt.

(3) y =
∫ x2
x cos(t2)dt.

(4) y =
∫ ex
e−x sin(ln t)dt.

Solutions.

(1) Here the integrand is given by f(t) = (t4 + 1)3. By fundamental theorem of

calculus, we have
dy

dx
= f(x) = (x4 + 1)3.

(2) The integrand is given by f(t) = 3t2 sin t. For a function F defined by F (x) =∫ x
3 f(t)dt, we have F ′(x) = f(x) and y =

∫ 3
x 3t2 sin tdt = −

∫ x
3 3t2 sin tdt =

−F (x).

Hence we have

dy

dx
=
d(−F (x))

dx
= −F ′(x) = −f(x) = −3x2 sinx.

(3) The integrand is given by f(t) = cos(t2). By corollary above, we have

dy

dx
= f(x2)(x2)′ − f(x)x′

= 2x cos(x4)− cos(x2).

(4) The integrand is given by f(t) = sin(ln t).
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By corollary above, we have

dy

dx
= f(ex)(ex)′ − f(e−x)(e−x)′

= ex sin(ln ex)− (−e−x) sin(ln e−x)

= ex sinx+ e−x sin(−x)

= sinx(ex − e−x).

Exercise 1.1. Find the following limit.

(1)

lim
x→0

1

x

∫ x

0

√
t3 + 1dt.

(2) Let a ∈ R be any real number.

lim
x→a

1

ex − ea

∫ x

a
e−t

2
dt.

Solutions.

(1) Consider a function F defined by

F (x) =

∫ x

0

√
t3 + 1dt.

Then we know F (0) = 0 and F ′(x) =
√
x3 + 1. Therefore we have

lim
x→0

1

x

∫ x

0

√
t3 + 1dt = lim

x→0

F (x)− F (0)

x− 0
= F ′(0) =

√
03 + 1 = 1.

(2) Consider a function F (x) =
∫ x
a e
−t2dt. Then we have F ′(x) = e−x

2
.

Now we apply the L’Hopital’s rule.

lim
x→a

∫ x
a e
−t2dt

ex − ea
= lim

x→a

e−x
2

ex
=
e−a

2

ea
= e−a

2−a.

Now we state another version of fundamental theorem of calculus.
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Theorem 1.4 (Fundamental Theorem of Calculus, Part 2). If a function f is con-

tinuous on [a, b] and F is an antiderivative of f , then we have∫ b

a
f(x)dx = F (b)− F (a).

Put differently, for a differentiable function f , we have∫ b

a
f ′(x)dx = f(b)− f(a).

Proof. Define a function G : [a, b]→ R by

G(x) =

∫ x

a
f(t)dt.

By fundamental theorem of calculus part 1, we have G′(x) = f(x).

Consider a function G− F . If we compute its derivative, then we have

(G− F )′(x) = G′(x)− F ′(x) = f(x)− f(x) = 0.

Hence, G− F is a constant function on [a, b].

Let’s say (G− F )(x) = G(x)− F (x) = C constantly. But we know that G(a) =∫ a
a f(t)dt = 0 and hence we have G(a)− F (a) = −F (a) = C.

Finally we have

G(x) = F (x) + C = F (x)− F (a)

for any x ∈ [a, b].

In particular, we have

G(b) =

∫ b

a
f(t)dt = F (b)− F (a).

�

We will use the notation [F (x)]ba or F (x)|ba to denote F (b)− F (a).

Example 1.2. Evaluate the following definite integral.

(1)
∫ π
0 sinxdx.

(2)
∫ lnπ
0 ex sin exdx.
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Solutions.

(1) Because − cosx is an antiderivative of sinx, we have∫ π

0
sinxdx = [− cosx]π0 = − cosπ + cos 0 = 2.

(2) To find an antiderivative of ex sin ex, we consider the substition

u = ex.

Then du = exdx and hence we have∫
ex sin exdx =

∫
sinudu = − cosu = − cos ex.

Hence by fundamental theorem of calculus part 2, we have∫ lnπ

0
ex sin exdx = [− cos ex]lnπ0

= − cos elnπ − (− cos e0)

= − cosπ + cos 1 = 1 + cos 1.

2. Integration of power series

Let us recall the following theorem, which says that the derivative of a power

series is given by term by term differentiation.

Theorem 2.1. If a power series S(x) =

∞∑
k=0

ak(x− a)k converges on (a− r, a+ r),

then the function S is differentiable on (a− r, a+ r) and its derivative is given by

S′(x) =
∞∑
k=0

kak(x− a)k−1.

There is a similar result for integrals. Let us state the theorem here.

Theorem 2.2. If a power series S(x) =
∞∑
k=0

ak(x− a)k converges on (a− r, a+ r),

then a power series
∑∞

k=0
ak
k+1(x− a)k+1 also converges on (a− r, a+ r) and hence
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an antiderivative of S(x) is given by∫
S(x)dx =

∞∑
k=0

ak
k + 1

(x− a)k+1 + C.

In particular, we have∫ x

a
S(t)dt =

∞∑
k=0

ak
k + 1

(x− a)k+1.

Example 2.1. Find the Taylor series at 0 of the following functions.

(1)

F (x) =

∫ x

0
e−t

2
dt.

(2)

F (x) =

∫ x2

0
ln(t3 + 1)dt.

Solutions.

(1) We know that for all t ∈ R,

e−t
2

=
∞∑
k=0

1

k!
(−t2)k =

∞∑
k=0

(−1)k

k!
t2k.

By theorem above, we have

F (x) =

∫ x

0
e−t

2
dt =

∞∑
k=0

(−1)k

(2k + 1) · k!
x2k+1.

Hence
∑∞

k=0
(−1)k

(2k+1)·k!x
2k+1 is the Taylor series of F (x) at 0.

(2) We know that for all t ∈ (−1, 1),

ln(t3 + 1) =

∞∑
k=1

(−1)k−1

k
t3k.

By theorem above, we have

F (x) =

∫ x2

0
ln(t3 + 1)dt =

∞∑
k=1

(−1)k

k(3k + 1)
(x2)3k+1 =

∞∑
k=1

(−1)k

k(3k + 1)
x6k+2.
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Exercise 2.1. Define a function F : [0, 1]→ R by

F (x) =
∞∑
k=1

1

k
xk.

(1) Show that F (x) = − ln(1− x) for x ∈ (−1, 1).

(2) Show that the following equality holds for all x ∈ (−1, 1).

∞∑
k=1

1

k(k + 1)
xk+1 = (1− x) ln(1− x) + x.

Solutions.

(1) We know that for all t ∈ (−1, 1),

1

1− t
=

∞∑
k=0

tk.

Since ∫ x

0

1

1− t
dt = [− ln(1− t)]x0 = − ln(1− x),

by theorem above, we have

− ln(1− x) =
∞∑
k=0

1

k + 1
xk+1 =

∞∑
k=1

1

k
xk = F (x).

(2) We integrate the equality

∞∑
k=1

1

k
xk = − ln(1− x)

once again.

Then we get

∞∑
k=1

1

k(k + 1)
xk+1 = (1− x) ln(1− x) + x.

Indeed, check
∫ x
0 − ln(1− t)dt = (1− x) ln(1− x) + x.
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3. Improper integral

An improper integral is the limit of a definite integral such that either the range

of integration is infinite or the integrand approaches to infinity at some points in

the range of integration.

Example 3.1. (1) The indefinite integral
∫∞
1

1
x2
dx is defined by

lim
M→∞

∫ M

1

1

x2
dx.

Hence, we have ∫ ∞
1

1

x2
dx = lim

M→∞

∫ M

1

1

x2
dx

= lim
M→∞

[
−1

x

]M
1

= lim
M→∞

(− 1

M
+ 1)

= 1.

(2) ∫ ∞
0

1

x2 + 1
dx = lim

M→∞

∫ M

0

1

x2 + 1
dx

= lim
M→∞

[arctanx]M0

= lim
M→∞

(arctanM − arctan 0) =
π

2
.

(3) ∫ 1

0

1√
x
dx = lim

h→0+

∫ 1

h

1√
x
dx

= lim
h→0+

[2
√
x]1h

= lim
h→0+

(2
√

1− 2
√
h) = 2.

Some notation not taught in the class
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For any positive integer n and a function y = f(x), we write

dny

dxn
= f (n)(x),

the n-th derivative of the function f(x).

For instance, d2y
dx2

= f (2)(x) and d3y
dx3

= f (3)(x)
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