THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1010 University Mathematics 2017-2018 Midterm Examination

1. (12 marks) Evaluate the following limits for each real number a.

(a)
$$\lim_{x \to 1} \frac{x - a}{x - 1}$$

Solution:

(b)
$$\lim_{x \to +\infty} (x - \sqrt{x^2 + a})$$

Solution:

2. (12 marks) Let a_n be the sequence defined by

$$\begin{cases} a_{n+1} = 1 - (a_n - 1)^2, \text{ for } n \ge 1\\ a_1 = \frac{1}{100}. \end{cases}$$

- (a) Show that $0 \le a_n \le 1$ for any $n \ge 1$.
- (b) Show that $a_{n+1} a_n > 0$ for any $n \ge 1$.
- (c) Explain whether the limit of a_n exists and find the limit if it exists.

3. (16 marks) Find $\frac{dy}{dx}$ where:

(a)
$$y = \frac{x^4 + 5x}{1 - e^x}$$

(b)
$$y = \sin\left(\sqrt{x \ln x}\right)$$

(c)
$$ye^x + xe^y = 1$$

(d)
$$x^y = y, \quad x > 0$$

4. (20 pts) Let n be a positive integer. Let:

$$f(x) = \begin{cases} x^3, & \text{if } x < 0; \\ x^n, & \text{if } x \ge 0. \end{cases}$$

Find all positive integers n such that:

- (a) f'(0) exists.
- (b) f''(0) exists.

Justify your answer.

5. Use the mean value theorem (MVT) to show

$$1/\sqrt{n+1} < \sqrt{n+1} - \sqrt{n} < 1/(2\sqrt{n}) \ \forall n \in \mathbb{N}$$

6. Use the mean value theorem (MVT) to show

$$(x-1)/x < \ln x < x - 1 \ \forall x > 1$$

- 7. Determine whether there is any differentiable function $f:[0,2]\to\mathbb{R}$ which satisfies f(0)=1, f(2)=4 and $f'(x)\leq 2 \ \forall x\in[0,2]$? Give reasons.
- 8. Let $f:[a,b]\to\mathbb{R}$ be differentiable and $a\geq 0$. Using one of the three mean value theorems, show $\exists x_1,x_2\in(a,b)$ such that

$$f'(x_1)/(a+b) = f'(x_2)/(2x_2).$$

3