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You can apply mean value theorem or other results covered in MATH1010.
Those questions with * may be challenging.

Exercise 1:

Show the following results.

(a) For z € [0,1),
log(l—z) < —x

1
(b) For z € [0,5}, i ( |
—x—x° <log(l —x

(c) Let ¢ €[0,1]. For z € [0,1],
1-¢)<l-cx

1
Remark: For z € [O, 5}, by (a) and (b), we have

—z—a2? <log(l—2z) < —x

Exercise 2:

Let f: R — R be a differentiable function. Suppose f’ is strictly increasing.
Show that

(a) For any x € R,
fll@) < flz+1) = fl) < fllz+1)

(b) For any n € N\ {1},

FAO+f)+..+f(n=1)<fn)—f)<f©2)+f0B)+..

Exercise 3(***):

Let f: R — R be a differentiable function.

Let {z,} C R be a sequence defined by
Tnt1 = f(2n)

Suppose there exists M < 1 such that |f/(x)] < M for any « € R. Show that

(1) (**) There exists z € R such that f(z) = z;
(2) There is only one z € R that satisfies the equation f(z) = ;
3) (*) lim z, ==z

n—oo

Remark: You may just attempt (3) by assuming (1), (2).

+ f'(n)



Appendix

In exercise 3, you are asked to show that the sequence {x,} converges to the fixed point z.

One application of this result is to find the roots of functions. For instance, consider the polynomial
equation

-2 —-2=0

The graph of " —x — 2
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There is no general formula to solve a polynomial equation with degree 5 or above on R. However, we
may approximate the solution by an iterative method.

Let

glz) =% —2 -2

We first estimate the interval for which the root of g(z) = 0 lies in:
Observe that

g(1) =-2, g(2) =28

By intermediate value theorem, there is a root z lying in the interval (1, 2).

In order to approximate the root z with certain accuracy, we may define an iterative scheme. Before
introducing an iterative scheme, we may observe the following:

5_r—2=0as

We can rewrite g(z) = «
z=(z+2)F or z=2a"—2
Question
(a) Let f(z) = (z+2)5. Find f'(z).
(b) Let f(z) =a° —2. Find f'(x).

After calculation, you may notice that for z € (1,2),

(b) |f'(x)] =5

(S

(a) [f(2)] <



By exercise 3, if we choose the definition of f in (a), the sequence
Tpi1 = f(Tn)
will converges to z that satisfies x = f(x). That is,
z=f(z)=(=+2)°
Recall that z is the root of g. In other words, the sequence {z,} converges to the root of g.
Hence we come up with an iterative scheme:
21 € (1,2), xp+1= f(zn) = (v, + 2)%
which will converge to an approximate solution to g(z) = 2° —x — 2 = 0.

Here is an example

Choose 1 = 1.5. Then
x9 = f(x1) = 1.2847351571
x3 = f(x2) = 1.2685280409
x4 = f(x3) = 1.2672737615

71000 = f(T999) ~ 1.2671683045

By computation,
g(w1000) ~ —4.44089 x 10716

Therefore, we have a well-approximated solution.

If we take f in (b) as our definition, we have the following observation.
x1 € (1,2), xpy1 = f(zn) = xi -2

Choose 1 = 1.5. Then
T2 = f(x1) = 5.59375
r3 = f(x2) ~ 5.475 x 103
zy = f(x3) ~ 4.918 x 10'8
x5 = f(x4) ~ 2.877 x 1093

Indeed, f is strictly increasing for € [1,00) by our computation on its derivative, and the sequence does
not converge to our solution. Therefore, if we take this definition, the iterative scheme fails.

Remark: f must be a well-defined function on R so that the iterative scheme works.



Solution

Exercise 1:

(a)

Observe that when x = 0, the inequality holds.
Let f(u) =log(l —u). Let = € (0,1).
Observe that f is continuous on [0, z] and differentiable on (0, z), with

1
f(u) = T S1 for any u € (0,1)

By (Lagrange) Mean Value Theorem, there exists £ € (0, x) such that
log(1—=) _ f(z)— f(0)

T x—0

= <-1

Therefore,
log(l—z) < —x

Observe that when x = 0, the inequality holds.
1
Let f(u) =log(l —u) +u?. Let x € (0, 5}
Observe that f is continuous on [0, z] and differentiable on (0, z), with

1 1
flu)= Tt 2u for any u € (0, 5)
1
Observe that 2(1 —u) > 1. Then 2u > 7 Yo 1y T Hence f'(u) > —1.
—u —u

By (Lagrange) Mean Value Theorem, there exists £ € (0, x) such that

T z—0

Therefore,

log(l —z) > —z — 2

Let ¢ € [0,1], z € [0, 1].
Observe that when (c,z) = (0,0), (0,1),(1,0) or (1,1), the inequality holds.
We exclude the above cases and further let ¢ € (0,1),z € (0,1).

Originally, we want to show
(I-e¢<1l-—czx

Interchanging ¢ and x, we have
(1-2)¢<1l-—cx

Let f(u) = (1 —u)".

Observe that f is continuous on [0, ] and differentiable on (0, z), with
f(u) = —c(1 —uw)! for any u e (0,1)
1

Observe that f/(u) = fcm < —c (Verify it).

By (Lagrange) Mean Value Theorem, there exists £ € (0, ) such that
(=2 -1 _ f@)- £(0)

T x—0

=f(§) < —c




Therefore,
1-2)<1l-cx

Interchanging x and c again, we get
1-¢)<l-cx

Exercise 2:

(a) Note that f is continuous on [z, + 1] and differentiable on (z,z + 1).
By (Lagrange) Mean Value Theorem, there exists £ € (z,x + 1) such that

flz+1) = f(x)

. =10

fla+1) = flz) =

Since f’ is strictly increasing,
fl@) < f1(©) < flx+1)
Therefore,

fll@) < fla+1) = fl@) < flla+1)
(b) For n € N\ {1},

)= (f) - fn—1) ) (Fn =1 = fn=2)) + ..+ (FB) - £@) + (£ - £(1))

g e

m=1

By (a), form=1,2,..,n—1,

flm) < f(m+1) = f(m) < f'(m+1)

Summing all the terms,

77;2_11 <:;_11< (m+1) (m)><:§f(m+1)

Therefore,

O+ @+ +f(n=1)<f(n) = fQ) < f2)+ ) +...+ ['(n)



Exercise 3(1):
Let h(z) = f(x) — . Suppose not, f(x) # x for any x € R.

There are three cases.

1 There exists x,y € R such that f(z) —2 <0 and f(y) —y > 0.
2 f(z) —x>0forall z € R.
3 f(x)—x<0forall zeR.

Case 1
Observe that h(x) < 0 and h(y) > 0. f is differentiable, and hence continuous.
Therefore h is continuous. By intermediate value theorem, there exists z between x and y such that

h(z)=0
Then f(z) = z, which leads to contradiction.

Case 2

We have f(0) > 0.

Since f is differentiable on R, h is differentiable on R.

Let > 0. Note that h is continuous on [0, z] and differentiable on (0, x).
By mean value theorem, there exists £ € (0, ) such that

f(z) = £(0)

o —J@O=sM<1

Then
f(z) <z + f(0)

By our assumption,
z < f(z) <ax+ f(0)

0
@, SO
x x
Note that lim 1+ & = lim 1=1.
T—0o0 €T Tr—r00
By squeeze theorem,
TGO
Tr—r0o0 i
Therefore,
i 21Oy, (1) 1O,
T—00 €T — T —00 €T €T
Earlier we showed that
F@) =10 oy
z—0
Letting x — oo,
1= lim ( f(0)§M<1
Z—00 x—0

which leads to contradiction.

Case 3
By using similar argument in case 2, we can show that it is not possible.

All the cases are not possible. Therefore, f(x) = x for some z € R.



Exercise 3(2):

Suppose not, there were more than one z that satisfies f(z) = x.
Let 21, 29, where z; # 29, be solutions to f(x) = x. That is,

f(z1) =21, 22 = f(22)
Since f is continuous inclusively between z; and zo, and is differentiable exclusively between z; and zs,

by mean value theorem, there exists £ between z; and z such that

f(z1) = f(z2)

=f<M<1
Z1 — 22

However,
flzr) = f(z2) 21—z

21 — 22 21 — 22

=1

which leads to contradiction.
Therefore, there is at most one solution.



Exercise 3(3):

Case 1
Suppose xp = z for some k € N.
Observe that

Thr1 = flar) = £(2) = 2

Then we can show, inductively, that x,, = z for all n > k.

Therefore, lim x, = z.
n—oo
Case 2
Suppose z # z for all k € N.
Let m=1,2,3,....n—1.
Note that f is continuous inclusively between z and z,,.
Also, f is differentiable exclusively between z and x,, .
By (Lagrange) mean value theorem, there exists £, exclusively between z and x,, such that

[en) 218 _ e,
Hence, by our assumption,
yﬂrm)_f(@ || <
P
Then
20— 2| = [ f(en-1) = £(2)
_ | fan) = f(2) (1 — 2)
PR
PR (Gl
FR—
<M [zno1— 2
< M? |zp_o — z‘

< Mt ‘xl — z‘

Since M < 1, lim M"! ’xl — z’ =0.

n—oo

By squeeze theorem, lim x, —z =0.
n—oo

Therefore, lim x, = z.
n—oo



