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1. Limit of Functions

1. Useful Limits

You may apply the following results derived in the lecture:

(L1) lim
x→0

sinx

x
= 1 (L2) lim

x→0

ex − 1

x
= 1

(L3) lim
x→0

ln(1 + x)

x
= 1 (L4) lim

n→∞

(
1 +

x

n

)n

= ex

(L5) lim
x→∞

xk

ex
= 0 for k ∈ N (L6) lim

x→∞

(lnx)k

x
= 0 for k ∈ N

2. One-Sided Limits for Functions

Let f : X → R be a function. Let c ∈ X.
We say lim

x→c+
f(x) = L if f(x) approaches L for all x approaching c and x > c.

We say lim
x→c−

f(x) = L if f(x) approaches L for all x approaching c and x < c.

Remark: The formal definition of the one-sided limits involves ε− δ language.

3. Squeeze Theorem for Functions

Let g, f, h : X → R be real-valued functions. Let c ∈ X.
Suppose g(x) ≤ f(x) ≤ h(x) for any x 6= c on some open interval containing c.

If there exists L ∈ R such that lim
x→c

g(x) = lim
x→c

h(x) = L,

then lim
x→c

f(x) exists and lim
x→c

f(x) = L.

2. Continuous Function

1. Definition

Let f : X → R be a function. The function f is said to be continuous at c ∈ X if

lim
x→c

f(x) = f(c)

The function f is said to be continuous if f(x) is continuous for all x ∈ X.

2. Intermediate Value Theorem

Let f : X → R be a function. Let a, b ∈ X. Suppose f is continuous at [a, b].
Then for all y between f(a) and f(b) (not inclusive),

there exists x ∈ (a, b) such that f(x) = y.

3. Extreme Value Theorem

Let f : X → R be a function. Let a, b ∈ X. Suppose f is continuous at [a, b].
Then there exists α, β ∈ [a, b] such that f(α) ≤ f(x) ≤ f(β) for any x ∈ [a, b].
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Exercise 1 (revision on sequence):

Let a1, b1 > 0 and a1 > b1. Let {an}, {bn} be two sequences such that

an+1 =
an + bn

2
, bn+1 =

√
anbn.

Show that

(a) an > bn for all n ∈ N.

(b) {an} is monotonically decreasing and {bn} is monotonically increasing.

(c) Both {an} and {bn} converge.

(d) lim
n→∞

an = lim
n→∞

bn.

Exercise 2:

Evaluate the following limits.

(a) lim
x→1

x+ x2 + x3 + ...+ xn − n
x− 1

(b) lim
x→∞

x
3
2

(√
x+ 4− 2

√
x+ 2 +

√
x
)

By using some results from (L1) to (L6), evaluate the following limits.

(c) lim
x→0

1− cosx cos 2x cos 3x

1− cosx
(d) lim

x→0

√
1 + sinx− 1

ex − 1

By using squeeze theorem, evaluate the following limit.

(e) lim
x→∞

sin tanx+ tan sinx

x

Exercise 3:

(a) Let f : R→ R be a function. Determine whether the function f is continuous.

(i) f(x) = |x− 3| (ii) f(x) =

{
0 x ≤ 0

x2 − 1 x > 0

(b) Let f : R→ R be the function defined by

f(x) =

{
cx+ 1 x ≤ 2

x4 − 1 x > 2

Find c such that f is a continuous function.

Exercise 4:

Suppose f : [0, 1]→ [0, 1] is a continuous function on [0, 1].

Show that there exists x ∈ [0, 1] such that f(x) = x2.
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Solution

Exercise 1:

(a) Please verify it yourself.

(b) By (a), for n ∈ N, an+1 =
an + bn

2
<
an + an

2
= an and bn+1 =

√
anbn >

√
bnbn = bn.

Hence, {an} is monotonically decreasing and {bn} is monotonically increasing.

(c) Note that a1 ≥ an > bn ≥ b1 for all n ∈ N.
Hence the sequences {an}, {bn} are bounded.
By monotone convergence theorem, both the sequences {an} and {bn} converge.

(d) Let lim
n→∞

an = a, lim
n→∞

bn = b.

Since an+1 =
an + bn

2
, one has a =

a+ b

2
. Therefore, a = lim

n→∞
an = lim

n→∞
bn = b.

Remark: This limit is called the arithmetic-geometric mean of a1 and b1.

Exercise 2:

(a) One has
xn − 1 = (x− 1)(xn−1 + xn−2 + ...+ 1)

Hence

lim
x→1

x+ x2 + x3 + ...+ xn − n
x− 1

= lim
x→1

(x− 1) + (x2 − 1) + (x3 − 1) + ...+ (xn − 1)

x− 1

= lim
x→1

x− 1

x− 1
+ lim

x→1

x2 − 1

x− 1
+ ...+ lim

x→1

xn − 1

x− 1

= 1 + 2 + ...+ n

=
n(n+ 1)

2

Remark: You may use first-order derivative from the first principles.
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(b)

lim
x→∞

x
3
2

(√
x+ 4− 2

√
x+ 2 +

√
x
)

= lim
x→∞

x
3
2

((√
x+ 4−

√
x+ 2

)
−
(√

x+ 2−
√
x
))

= lim
x→∞

x
3
2

(
(x+ 4)− (x+ 2)√
x+ 4 +

√
x+ 2

− (x+ 2)− x√
x+ 2 +

√
x

)
= lim

x→∞
x

3
2

(
2√

x+ 4 +
√
x+ 2

− 2√
x+ 2 +

√
x

)
= lim

x→∞
2x

3
2

(
(
√
x+ 2 +

√
x)− (

√
x+ 4 +

√
x+ 2)

(
√
x+ 4 +

√
x+ 2)(

√
x+ 2 +

√
x)

)
= lim

x→∞
2x

3
2

( √
x−
√
x+ 4

(
√
x+ 4 +

√
x+ 2)(

√
x+ 2 +

√
x)

)
= lim

x→∞
2x

3
2

(
x− (x+ 4)

(
√
x+
√
x+ 4)(

√
x+ 4 +

√
x+ 2)(

√
x+ 2 +

√
x)

)
= lim

x→∞
2

(
−4x

3
2

(
√
x+
√
x+ 4)(

√
x+ 4 +

√
x+ 2)(

√
x+ 2 +

√
x)

)
= lim

x→∞
− 8

√
x

√
x+
√
x+ 4

√
x√

x+ 4 +
√
x+ 2

√
x√

x+ 2 +
√
x

= − 8 lim
x→∞

1

1 +

√
1 +

4

x

1√
1 +

4

x
+

√
1 +

2

x

1√
1 +

2

x
+ 1

= − 8 lim
x→∞

1

1 +

√
1 +

4

x

lim
x→∞

1√
1 +

4

x
+

√
1 +

2

x

lim
x→∞

1√
1 +

2

x
+ 1

= − 8 · 1

2
· 1

2
· 1

2
= − 1

Another approach using second-order derivative:
Let f : X → R be a function. If f is twice continuously differentiable at x ∈ X, then

f ′′(x) = lim
h→0

f(x+ h)− 2f(x) + f(x− h)

h2

Put y = x+ 2. Then

lim
x→∞

x
3
2

(√
x+ 4− 2

√
x+ 2 +

√
x
)

= lim
y→∞

(y − 2)
3
2

(√
y + 2− 2

√
y +

√
y − 2

)
= lim

y→∞

[(
1− 2

y

) 3
2

y
3
2

][(√
1 +

2

y
− 2
√

1 +

√
1− 2

y

)
y

1
2

]

= lim
y→∞

(
1− 2

y

) 3
2

√
1 +

2

y
− 2
√

1 +

√
1− 2

y
1

y2

= lim
y→∞

(
1− 2

y

) 3
2

lim
y→∞

4

√
1 +

2

y
− 2
√

1 +

√
1− 2

y(
2

y

)2

= 1 · 4 d2

du2

∣∣∣∣
u=1

√
u

= 1 · 4
(
− 1

4

)
= − 1
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(c) Note that for n ∈ N,

lim
x→0

1− cosnx

1− cosx
= lim

x→0

2 sin2 nx

2

2 sin2 x

2

= lim
x→0

n2
sin2 nx

2(
nx

2

)2

(
x

2

)2

sin2 x

2

= n2

Hence,

lim
x→0

1− cosx cos 2x cos 3x

1− cosx
= lim

x→0

1− 1

2

(
cos 3x+ cosx

)
cos 3x

1− cosx

= lim
x→0

1− 1

2

(
cos2 3x+ cosx cos 3x

)
1− cosx

= lim
x→0

1− 1

2

[ 1

2

(
cos 6x+ 1

)
+

1

2

(
cos 4x+ cos 2x

) ]
1− cosx

= lim
x→0

3

4
− 1

4

(
cos 6x+ cos 4x+ cos 2x

)
1− cosx

=
1

4
lim
x→0

1− cos 6x

1− cosx
+

1

4
lim
x→0

1− cos 4x

1− cosx
+

1

4
lim
x→0

1− cos 2x

1− cosx

=
1

4
62 +

1

4
42 +

1

4
22

= 14

(d)

lim
x→0

√
1 + sinx− 1

ex − 1
= lim

x→0

√
1 + sinx− 1

x
ex − 1

x

= lim
x→0

sinx

x
(√

1 + sinx+ 1
)

ex − 1

x

= lim
x→0

sinx

x
· 1√

1 + sinx+ 1
· 1
ex − 1

x

= lim
x→0

sinx

x
lim
x→0

1√
1 + sinx+ 1

lim
x→0

1
ex − 1

x

= 1 · 1

2
· 1

=
1

2
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(e) One has
−1 ≤ sinx ≤ 1

Hence,
| sin tanx| ≤ 1, | tan sinx| ≤ tan 1

and ∣∣∣∣ sin tanx

x

∣∣∣∣ ≤ 1

x
,

∣∣∣∣ tan sinx

x

∣∣∣∣ ≤ tan 1

x

Note that

lim
x→∞

1

x
= 0, lim

x→∞

tan 1

x
= 0

and ∣∣∣∣ sin tanx+ tan sinx

x

∣∣∣∣ ≤ ∣∣∣∣ sin tanx

x

∣∣∣∣+

∣∣∣∣ tan sinx

x

∣∣∣∣ ≤ 1

x
+

tan 1

x
for x > 0

By squeeze theorem,

lim
x→∞

sin tanx+ tan sinx

x
= 0

Exercise 3:

(a)(i) f is a continuous function.

f(x) =

{
x− 3 x ≤ 3

3− x x > 3

For c > 3, lim
x→c

x− 3 = c− 3 = f(c);

For c < 3, lim
x→c

3− x = 3− c = f(c);

Also,

lim
x→3+

f(x) = lim
x→3+

x− 3 = 0 = f(3) and lim
x→3+

f(x) = lim
x→3−

3− x = 0 = f(3)

Hence, lim
x→c

f(x) = f(c) for all c ∈ R.

(a)(ii) f is not a continuous function.

lim
x→0+

f(x) = 02 − 1 = −1 and lim
x→0−

f(x) = 0

Hence, lim
x→0

f(x) does not exist.

(b)
lim

x→2+
f(x) = 24 − 1 = 15

lim
x→2−

f(x) = 2c+ 1

Then we have
2c+ 1 = 15 ⇐⇒ c = 7

such that lim
x→2

f(x) exists and lim
x→2

f(x) = f(2) = 15.

Exercise 4:

Let h(x) = f(x)− x2.
Then h(0) = f(0), h(1) = f(1)− 1. Note that h(0) = f(0) ≥ 0 and h(1) = f(1)− 1 ≤ 0.
Observe that if h(0) = 0 or h(1) = 0, we finish the proof.
Assume h(0) > 0 and h(1) < 0.
By intermediate value theorem, since h is continuous, there exists c ∈ (0, 1) such that h(c) = 0.
For this c, f(c) = c2.


