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1. Limit of Functions

1. Useful Limits
You may apply the following results derived in the lecture:
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2. One-Sided Limits for Functions

Let f: X — R be a function. Let ¢ € X.
We say lim+ f(z) = L if f(z) approaches L for all = approaching ¢ and x > c.
Tr—c

We say lim f(z) = L if f(z) approaches L for all x approaching ¢ and x < c.
Tr—rc—
Remark: The formal definition of the one-sided limits involves € — § language.

3. Squeeze Theorem for Functions

Let g, f,h : X — R be real-valued functions. Let ¢ € X.
Suppose g(x) < f(z) < h(x) for any & # ¢ on some open interval containing c.

If there exists L € R such that liLn g(x) = liLn h(z) = L,

then lim f(z) exists and lim f(x) = L.
r—c r—cC

2. Continuous Function

1. Definition
Let f: X — R be a function. The function f is said to be continuous at ¢ € X if

lim f(z) = f(c)

Tr—c

The function f is said to be continuous if f(z) is continuous for all z € X.

2. Intermediate Value Theorem

Let f: X — R be a function. Let a,b € X. Suppose f is continuous at [a, b].
Then for all y between f(a) and f(b) (not inclusive),

there exists « € (a,b) such that f(z) =y.

3. Extreme Value Theorem

Let f: X — R be a function. Let a,b € X. Suppose [ is continuous at [a, b].
Then there exists «, 8 € [a,b] such that f(a) < f(z) < f(B) for any z € [a, b].



Exercise 1 (revision on sequence):
Let aq,b; > 0 and ay > by. Let {a,}, {bn} be two sequences such that

an + by,

Ap+1 = 2 5 bn—i—l - anbn-

Show that

a, > b, for all n € N.

(a
(

b) {a,} is monotonically decreasing and {b, } is monotonically increasing.

)
)
(¢) Both {a,} and {b,} converge.
(d)

Exercise 2:

Evaluate the following limits.
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By using some results from (L1) to (L6), evaluate the following limits.
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By using squeeze theorem, evaluate the following limit.

sintanz + tansinx
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Exercise 3:

(a) Let f: R — R be a function. Determine whether the function f is continuous.

22—1 x>0

(i) flx)=|z—3] () flz) = {o 2 <0

(b) Let f: R — R be the function defined by

f(x>:{cx+1 r <2

zt—1 z>2
Find ¢ such that f is a continuous function.
Exercise 4:

Suppose f :[0,1] — [0,1] is a continuous function on [0, 1].
Show that there exists x € [0, 1] such that f(z) = 22



Solution

Exercise 1:

(a) Please verify it yourself.

a, + by

(b) By (a), forn € N, a1 = < an ; In _ an and by41 = Vapb, > Vbpb, = by,.
Hence, {a,} is monotonically decreasing and {b,,} is monotonically increasing.
(¢) Note that a1 > a,, > b, > by for all n € N.

Hence the sequences {a,}, {b,} are bounded.
By monotone convergence theorem, both the sequences {a,} and {b,} converge.

(d) Let lim a, =a, lim b, =b.

n— oo n—oo

On + bn, one has a = a——’—b. Therefore, a = lim a, = lim b, =b.
2 2 n—oo n— o0

Since a1 =

Remark: This limit is called the arithmetic-geometric mean of a; and b;.

Exercise 2:
(a) One has
2" —1=(x—1)(a"  +2" 2+ .+ 1)
Hence
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Remark: You may use first-order derivative from the first principles.



(b)
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Another approach using second-order derivative:
Let f: X — R be a function. If f is twice continuously differentiable at € X, then
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Put y =2z + 2. Then
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(c) Note that for n € N,
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(e) One has

—1<sinz <1
Hence,
|sintanz| <1, [tansinz| <tanl
and
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S —y <
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By squeeze theorem,
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Exercise 3:

(a)(i) f is a continuous function.

3—r >3

f(x):{x—?) <3

Forc¢>3,limz—-3=c—3= f(c);
r—cC
For ¢ < 3, liLnS—x:B—c:f(c);
Also,
lim f(z)= lim 2—3=0= f(3) and liIgl+ f(z)= lim 3—z=0= f(3)
r—

z—3+1 T—3+ T—3~

Hence, lgnf(a:) = f(c) for all c € R.
(a)(ii) f is not a continuous function.

lim f(x)=0*—~1=-1 and lim f(z)=0

z—0t z—0~

Hence, lim f(z) does not exist.
z—0

(b)
lim f(z)=2'-1=15

r—2+1

lim f(z)=2c+1
r—2"
Then we have
20+1=15 <= ¢c=7

such that ,ll_>H12 f(z) exists and i1_>II12 f(z) = f(2) =15.

Exercise 4:

Let h(z) = f(z) — 22.

Then h(0) = f(0), k(1) = f(1) — 1. Note that ~A(0) = f(0) > 0 and (1) = f(1) — 1 <O0.
Observe that if h(0) = 0 or h(1) = 0, we finish the proof.

Assume h(0) > 0 and h(1) < 0.

By intermediate value theorem, since h is continuous, there exists ¢ € (0, 1) such that h(c) = 0.
For this ¢, f(c) = %



