THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics

MATH1010 University Mathematics (Spring 2018)

Tutorial 2 CHAK Wai Ho

1. Mathematical Induction

The First Principle of Mathematical Induction

Let $P_n = P(n)$ be a proposition, or a statement involving the natural number n. Let $n_0 \in \mathbb{N}$. Given P_{n_0} is true. Suppose for $k \in \mathbb{N}$, $k \ge n_0$, if P_k is true, then P_{k+1} is true. Then P_n is true for all $n \in \mathbb{N}$, $n \ge n_0$.

We may view $\{P_n\}$ as a sequence of propositions: $P_n = 1$ if P_n is true; otherwise $P_n = 0$. From the above principle, one can provide a definition for the sequence $\{P_n\}$ as

$$P_{n_0} = 1, \quad P_{n+1} = P_n \quad \text{for} \quad n \ge n_0$$

This shows that $P_n = 1$ for all $n \in \mathbb{N}$, $n \ge n_0$.

The Second Principle of Mathematical Induction (Optional)

Let $P_n = P(n)$ be a proposition, or a statement involving the natural number n. Let $n_0 \in \mathbb{N}$. Given P_{n_0}, P_{n_0+1} are true. Suppose for $k \in \mathbb{N}$, $k \ge n_0$, if P_k, P_{k+1} are true, then P_{k+2} is true. Then P_n is true for all $n \in \mathbb{N}, n \ge n_0$.

Can you figure out a definition for the sequence $\{P_n\}$?

2. Function

In the last tutorial, you should know that a sequence is an example of functions. This tutorial mainly focuses on the definitions of some real-valued functions.

Definition

(a) Domain and image of a function

Let $f: D \subset \mathbb{R} \to \mathbb{R}$ be a function. Define $f(D) = \{f(x) : x \in D\}$. The set D is the domain of f, and the set f(D) is the image of f.

(b) Injective Function

Let $f: D \to \mathbb{R}$ be a function. The function f is said to be injective (one-to-one) if for any $x_1, x_2 \in D$, if $f(x_1) = f(x_2)$, then $x_1 = x_2$.

(c) Surjective Function

Let $f: D \to \mathbb{R}$ be a function. The function f is said to be surjective (onto) if for any $y \in \mathbb{R}$, there exists $x \in D$ such that f(x) = y.

(d) Bijective Function

A function is said to be bijective if it is both injective and surjective.

(e) Even Function

Let $f: D \to \mathbb{R}$ be a function. The function f is said to be even if for any $x \in D$, f(-x) = f(x).

(f) Odd Function

Let $f: D \to \mathbb{R}$ be a function. The function f is said to be odd if for any $x \in D$, f(-x) = -f(x). Exercise 1 (For students who are not familiar with mathematical induction or trigonometry):

(1) Prove the following for all $n \in \mathbb{N}$ by induction.

(a)
$$1+3+6+...+\frac{n(n+1)}{2} = \frac{n(n+1)(n+2)}{3!}$$

(b)
$$1^3 + 2^3 + 3^3 + \dots + (2n)^3 = n^2(2n+1)^2$$

(c)
$$\sin \theta + \sin 3\theta + ... + \sin(2n-1)\theta = \frac{\sin^2 n\theta}{\sin \theta}$$
, where θ is not a multiple of 2π

(2) Let $\{a_n\}$ be the sequence defined by

$$a_0 = \sqrt{2}, \qquad a_n = \sqrt{2 + a_{n-1}}$$

Show, by induction, that $a_n = 2\cos\frac{\pi}{2^{n+2}}$ for all non-negative integer n.

Exercise 2:

Let f be a function. Find the domain and image of the function f.

(a)
$$f(x) = \frac{1}{\sqrt{x^2 - 9}}$$

(b)
$$f(x) = \frac{1}{\sin x + \cos x}$$

Exercise 3:

Let f be a function. Determine whether the function f is even or odd.

(a)
$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R}; \quad f(x) = \frac{1}{x^2}$$

(b)
$$f: \mathbb{R} \to \mathbb{R}$$
; $f(x) = \frac{\exp(x) - \exp(-x)}{2}$

Exercise 4:

Let f be a function. Determine whether the function f is injective, surjective and bijective.

(a)
$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}; \quad f(x) = \frac{1}{x}$$

(b)
$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R}; \quad f(x) = \frac{1}{x}$$

(c)
$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}; \quad f(x) = \frac{1}{|x|}$$

(d)
$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R}^+; \quad f(x) = \frac{1}{|x|}$$

(e)
$$f: \mathbb{R} \setminus \{2\} \to \mathbb{R}$$
; $f(x) = \frac{3x+2}{x-2}$

Exercise 5:

Let f be a function. Sketch the graph of the function f.

(a)
$$f(x) = |x - 2| + 1$$

(b)
$$f(x) = ||x - 3| - 6|$$