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Definite Integral

1. Theorem for definite integral

Suppose f is continuous on [a, b]. Then∫ b

a

f(x)dx = lim
n→∞

n∑
k=1

f(xk)∆xk

Take xk = a+
k

n
(b− a) and ∆xk =

b− a
n

, we have

∫ b

a

f(x)dx = lim
n→∞

n∑
k=1

f

(
a+

k

n
(b− a)

)(
b− a
n

)

2. Fundamental Theorem of Calculus

(i) Suppose f is continuous on [a, b]. Define

F (x) =

∫ x

a

f(t)dt

Then F is continuous on [a, b], differentiable on (a, b) and

F ′(x) =
d

dx

∫ x

a

f(t)dt = f(x)

(ii) Suppose f is continuous on [a, b]. Define F as above. Then∫ b

a

f(x)dx = F (b)− F (a)

3. Corollary

Suppose f is continuous on [a, b]. Let g, h be differentiable functions on [a, b]. Then

d

dx

∫ h(x)

g(x)

f(t)dt = f(h(x))h′(x)− f(g(x))g′(x)
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Exercise 1:

Evaluate the following limits.

(a) lim
n→∞

n∑
k=1

1

n+ 2k

(b) lim
n→∞

n∑
k=1

k4

n5

(c) lim
n→∞

2n∑
k=1

1√
2n2 + kn

Exercise 2:

Evaluate the following integrals.

(a)

∫ 2

0

|1− x|dx

(b)

∫ π
2

0

sec3
x

2
tan

x

2
dx

Exercise 3:

Find F ′(x), where

(a) F (x) =

∫ x2

0

et
2

dt

(b) F (x) =

∫ 2x

0

sin t ln(1 + t)dt

(c) F (x) =

∫ x5

x3

ln t cos etdt

Exercise 4:

Define the function f :

(
0,
π

2

)
→ R by

f(x) =

∫ x

1

cos(sin t)dt

(a) Show that f is strictly increasing on

(
0,
π

2

)
.

(b) Find all x satisfying f(x) = 0.

(c) Let g be the inverse of f . Find g′(0).
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Solution

Exercise 1:

(a) Let f(x) =
1

1 + 2x
.

lim
n→∞

n∑
k=1

1

n+ 2k
= lim
n→∞

n∑
k=1

1

1 + 2 · k
n

1

n
= lim
n→∞

n∑
k=1

f

(
k

n

)
1

n
=

∫ 1

0

f(x)dx

=

∫ 1

0

1

1 + 2x
dx =

1

2

[
ln |1 + 2x|

]1
0

=
ln 3

2

(b) Let f(x) = x4.

lim
n→∞

n∑
k=1

k4

n5
= lim
n→∞

n∑
k=1

(
k

n

)4
1

n
= lim
n→∞

n∑
k=1

f

(
k

n

)
1

n
=

∫ 1

0

f(x)dx

=

∫ 1

0

x4dx =
1

5

[
x5
]1
0

=
1

5

(c) Let f(x) =
1√

2 + x
.

lim
n→∞

2n∑
k=1

1√
2n2 + kn

= lim
n→∞

2n∑
k=1

1√
2 +

k

n

1

n
=

∫ 2

0

f(x)dx

=

∫ 2

0

1√
2 + x

dx =

[
2
√

2 + x

]2
0

= 4− 2
√

2

Exercise 2:

(a) ∫ 2

0

|1− x|dx =

∫ 1

0

|1− x|dx+

∫ 2

1

|1− x|dx =

∫ 1

0

(1− x)dx+

∫ 2

1

(x− 1)dx

=

[
x− x2

2

]1
0

+

[
x2

2
− x
]2
1

= 1

(b) ∫ π
2

0

sec3
x

2
tan

x

2
dx = 2

∫ π
2

0

sec3
x

2
tan

x

2
d
x

2
= 2

∫ π
2

0

sec2
x

2
d sec

x

2
=

2

3

[
sec3

x

2

]π
2

0

=
2
√

8− 2

3

Exercise 3:

(a)

F ′(x) = 2x · e(x
2)

2

= 2xex
4

(b)
F ′(x) = 2 · sin(2x) ln(1 + 2x) = 2 sin(2x) ln(1 + 2x)

(c)

F ′(x) = 5x4 · ln(x5) cos ex
5

− 3x2 · ln(x3) cos ex
3

= 5x4 ln(x5) cos ex
5

− 3x2 ln(x3) cos ex
3
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Exercise 4:

(a) By Fundamental Theorem of Calculus,

f ′(x) = cos(sinx)

For x ∈ (0, π2 ),
f ′(x) = cos(sinx) > 0

Hence, f is strictly increasing on (0, π2 ).

(b) Note that f(1) = 0 and f is strictly increasing. So the only x satisfying f(x) = 0 is x = 1.

(c) Note that
g(f(x)) = x

g′(f(x))f ′(x) = 1

Since f(1) = 0, we have
g′(0)f ′(1) = 1

g′(0) =
1

f ′(1)

g′(0) =
1

cos sin 1


