1 Convex Analysis

Main references:

- Vandenberghe (UCLA): EECS236C - Optimization methods for large scale systems, http://www.seas.ucla.edu/~vandenbe/ee236c.html
- Parikh and Boyd, Proximal algorithms, slides and note.
http://stanford.edu/~boyd/papers/prox_algs.html
- Boyd, ADMM
http://stanford.edu/~boyd/admm.html
- Simon Foucart and Holger Rauhut, Appendix B.

1.1 Motivations: Convex optimization problems

In applications, we encounter many constrained optimization problems. Examples

- Basis pursuit: exact sparse recovery problem

$$
\min \|\mathbf{x}\|_{1} \text { subject to } \mathbf{A x}=\mathbf{b} .
$$

or robust recovery problem

$$
\min \|\mathbf{x}\|_{1} \text { subject to }\|\mathbf{A x}-\mathbf{b}\|_{2}^{2} \leq \epsilon .
$$

- Image processing:

$$
\min \|\nabla \mathbf{x}\|_{1} \text { subject to }\|\mathbf{A x}-\mathbf{b}\|_{2}^{2} \leq \epsilon
$$

- The constrained can be a convex set \mathcal{C}. That is

$$
\min _{x} f_{0}(x) \text { subject to } A x \in \mathcal{C}
$$

we can define an indicator function

$$
\iota_{\mathcal{C}}(x)= \begin{cases}0 & \text { if } x \in \mathcal{C} \\ +\infty & \text { otherwise } .\end{cases}
$$

We can rewrite the constrained minimization problem as a unconstrained minimization problem:

$$
\min _{x} f_{0}(x)+\iota_{C}(A x) .
$$

This can be reformulated as

$$
\min _{x, y} f_{0}(x)+\iota_{C}(y) \text { subject to } A x=y .
$$

- In abstract form, we encounter

$$
\min f(x)+g(A x)
$$

we can express it as

$$
\min f(x)+g(y) \quad \text { subject to } \quad A x=y .
$$

- For more applications, see Boyd's book.

A standard convex optimization problem can be formulated as

$$
\begin{aligned}
& \min _{\mathbf{x} \in X} f_{0}(\mathbf{x}) \\
& \text { subject to } \quad \mathbf{A} \mathbf{x}=\mathbf{y} \\
& \text { and } \\
& f_{i}(\mathbf{x}) \leq b_{i}, \quad i=1, \ldots, M
\end{aligned}
$$

Here, f_{i} 's are convex. The space X is a Hilbert space. Here, we just take $X=\mathbb{R}^{N}$.

1.2 Convex functions

Goal: We want to extend theory of smooth convex analysis to non-differentiable convex functions. Let X be a separable Hilbert space, $f: X \rightarrow(-\infty,+\infty]$ be a function.

- Proper: f is called proper if $f(x)<\infty$ for at least one x. The domain of f is defined to be: $\operatorname{domf}=\{x \mid f(x)<\infty\}$.
- Lower Semi-continuity: f is called lower semi-continuous if $\lim \inf _{x_{n} \rightarrow \bar{x}} f\left(x_{n}\right) \geq f(\bar{x})$.
- The set epi $f:=\{(x, \eta) \mid f(x) \leq \eta\}$ is called the epigraph of f.
- Prop: f is l.s.c. if and only if epi f is closed. Sometimes, we call such f closed. (https:// proofwiki.org/wiki/Characterization_of_Lower_Semicontinuity)
- The indicator function $\iota_{\mathcal{C}}$ of a set \mathcal{C} is closed if and only if \mathcal{C} is closed.

- Convex function

- f is called convex if $\operatorname{dom} f$ is convex and Jensen's inequality holds: $f((1-\theta) x+\theta y) \leq(1-\theta) f(x)+\theta f(y)$ for all $0 \leq \theta \leq 1$ and any $x, y \in X$.
- Proposition: f is convex if and only if epi f is convex.
- First-order condition: for $f \in C^{1}$, epi f being convex is equivalent to $f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle$ for all $x, y \in X$.
- Second-order condition: for $f \in C^{2}$, Jensen's inequality is equivalent to $\nabla^{2} f(x) \succeq 0$.
- If f_{α} is a family of convex function, then $\sup _{\alpha} f_{\alpha}$ is again a convex function.
- Strictly convex:
- f is called strictly convex if the strict Jensen inequality holds: for $x \neq y$ and $t \in(0,1)$,

$$
f((1-t) x+t y)<(1-t) f(x)+t f(y)
$$

- First-order condition: for $f \in C^{1}$, the strict Jensen inequality is equivalent to $f(y)>f(x)+\langle\nabla f(x), y-x\rangle$ for all $x, y \in X$.
- Second-order condition: for $f \in C^{2},\left(\nabla^{2} f(x) \succ 0\right) \Longrightarrow$ strict Jensen's inequality is equivalent to .

Proposition 1.1. A convex function $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is continuous.
Proposition 1.2. Let $f: \mathbb{R}^{N} \rightarrow(-\infty, \infty]$ be convex. Then

1. a local minimizer of f is also a global minimizer;
2. the set of minimizers is convex;
3. if f is strictly convex, then the minimizer is unique.

1.3 Gradients of convex functions

Proposition 1.3 (Monotonicity of $\nabla f(x)$). Suppose $f \in C^{1}$. Then f is convex if and only if dom f is convex and $\nabla f(x)$ is a monotone operator:

$$
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq 0
$$

Proof. 1. (\Rightarrow) From convexity

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle, \quad f(x) \geq f(y)+\langle\nabla f(y), x-y\rangle .
$$

Add these two, we get monotonicity of $\nabla f(x)$.
2. (\Leftarrow) Let $g(t)=f(x+t(y-x))$. Then $g^{\prime}(t)=\langle\nabla f(x+t(y-x)), y-x\rangle \geq g^{\prime}(0)$ by monotonicity. Hence

$$
f(y)=g(1)=g(0)+\int_{0}^{1} g^{\prime}(t) d t \geq g(0)+\int_{0}^{1} g^{\prime}(0) d t=f(x)+\langle\nabla f(x), y-x\rangle
$$

Proposition 1.4. Suppose f is convex and in C^{1}. The following statements are equivalent.
(a) Lipschitz continuity of $\nabla f(x)$: there exists an $L>0$ such that

$$
\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\| \quad \text { for all } x, y \in \operatorname{dom} f
$$

(b) $g(x):=\frac{L}{2}\|x\|^{2}-f(x)$ is convex.
(c) Quadratic upper bound

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|y-x\|^{2} .
$$

(d) Co-coercivity

$$
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq \frac{1}{L}\|\nabla f(x)-\nabla f(y)\|^{2} .
$$

Proof. \quad 1. $(a) \Rightarrow(b)$:

$$
\begin{aligned}
& |\langle\nabla f(x)-\nabla f(y), x-y\rangle| \leq\|\nabla f(x)-\nabla f(y)\|\|x-y\| \leq L\|x-y\|^{2} \\
\Leftrightarrow & \langle\nabla g(x)-\nabla g(y), x-y\rangle=\langle L(x-y)-(\nabla f(x)-\nabla f(y)), x-y\rangle \geq 0
\end{aligned}
$$

Therefore, $\nabla g(x)$ is monotonic and thus g is convex.
2. (b) \Leftrightarrow (c): g is convex \Leftrightarrow

$$
\begin{aligned}
& g(y) \geq g(x)+\langle\nabla g(x), y-x\rangle \\
\Leftrightarrow & \frac{L}{2}\|y\|^{2}-f(y) \geq \frac{L}{2}\|x\|^{2}-f(x)+\langle L x-\nabla f(x), y-x\rangle \\
\Leftrightarrow & f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|x-y\|^{2} .
\end{aligned}
$$

3. (b) \Rightarrow (d): Define $f_{x}(z)=f(z)-\langle\nabla f(x), z\rangle, f_{y}(z)=f(z)-\langle\nabla f(y), z\rangle$. From (b), both $(L / 2)\|z\|^{2}-f_{x}(z)$ and $(L / 2)\|z\|^{2}-f_{y}(z)$ are convex, and $z=x$ minimizes f_{x}. Thus from the proposition below

$$
f(y)-f(x)-\langle\nabla f(x), y-x\rangle=f_{x}(y)-f_{x}(x) \geq \frac{1}{2 L}\left\|\nabla f_{x}(y)\right\|^{2}=\frac{1}{2 L}\|\nabla f(y)-\nabla f(x)\|^{2} .
$$

Similarly, $z=y$ minimizes $f_{y}(z)$, we get

$$
f(x)-f(y)-\langle\nabla f(y), x-y\rangle \geq \frac{1}{2 L}\|\nabla f(y)-\nabla f(x)\|^{2} .
$$

Adding these two together, we get the co-coercivity.
4. $(d) \Rightarrow(a)$: by Cauchy inequality.

Proposition 1.5. Suppose f is convex and in C^{1} with $\nabla f(x)$ being Lipschitz continuous with parameter L. Suppose x^{*} is a global minimum of f. Then

$$
\frac{1}{2 L}\|\nabla f(x)\|^{2} \leq f(x)-f\left(x^{*}\right) \leq \frac{L}{2}\left\|x-x^{*}\right\|^{2} .
$$

Proof. 1. Right-hand inequality follows from quadratic upper bound.
2. Left-hand inequality follows by minimizing quadratic upper bound

$$
f\left(x^{*}\right)=\inf _{y} f(y) \leq \inf _{y}\left(f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|y-x\|^{2}\right)=f(x)-\frac{1}{2 L}\|\nabla f(x)\|^{2} .
$$

1.4 Strong convexity

f is called strongly convex if domf is convex and the strong Jensen inequality holds: there exists a constant $m>0$ such that for any $x, y \in \operatorname{domf}$ and $t \in[0,1]$,

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)-\frac{m}{2} t(1-t)\|x-y\|^{2} .
$$

This definition is equivalent to the convexity of $g(x):=f(x)-\frac{m}{2}\|x\|^{2}$. This comes from the calculation

$$
(1-t)\|x\|^{2}+t\|y\|^{2}-\|(1-t) x+t y\|^{2}=t(1-t)\|x-y\|^{2} .
$$

When $f \in C^{2}$, then strong convexity of f is equivalent to

$$
\nabla^{2} f(x) \succeq m I \quad \text { for any } x \in \operatorname{dom} f .
$$

Proposition 1.6. Suppose $f \in C^{1}$. The following statements are equivalent:
(a) f is strongly convex, i.e. $g(x)=f(x)-\frac{m}{2}\|x\|^{2}$ is convex,
(b) for any $x, y \in \operatorname{dom} f,\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq m\|x-y\|^{2}$.
(c) (quadratic lower bound):

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle+\frac{m}{2}\|x-y\|^{2} .
$$

Proposition 1.7. If f is strongly convex, then f has a unique global minimizer x^{*} which satisfies

$$
\frac{m}{2}\left\|x-x^{*}\right\|^{2} \leq f(x)-f\left(x^{*}\right) \leq \frac{1}{2 m}\|\nabla f(x)\|^{2} \quad \text { for all } x \in \operatorname{dom} f .
$$

Proof. 1. For lelf-hand inequality, we apply quadratic lower bound

$$
f(x) \geq f\left(x^{*}\right)+\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle+\frac{m}{2}\left\|x-x^{*}\right\|^{2}=\frac{m}{2}\left\|x-x^{*}\right\|^{2} .
$$

2. For right-hand inequality, quadratic lower bound gives

$$
f\left(x^{*}\right)=\inf _{y} f(y) \geq \inf _{y}\left(f(x)+\langle\nabla f(x), y-x\rangle+\frac{m}{2}\|y-x\|^{2}\right) \geq f(x)-\frac{1}{2 m}\|\nabla f(x)\|^{2}
$$

We take infimum in y then get the left-hand inequality.

Proposition 1.8. Suppose f is both strongly convex with parameter m and $\nabla f(x)$ is Lipschitz continuous with parameter L. Then f satisfies stronger co-coercivity condition

$$
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq \frac{m L}{m+L}\|x-y\|^{2}+\frac{1}{m+L}\|\nabla f(x)-\nabla f(y)\|^{2} .
$$

Proof. 1. Consider $g(x)=f(x)-\frac{m}{2}\|x\|^{2}$. From strong convexity of f, we get $g(x)$ is convex.
2. From Lipschitz of f, we get g is also Lipschitz continuous with parameter $L-m$.
3. We apply co-coercivity to $g(x)$:

$$
\begin{gathered}
\langle\nabla g(x)-\nabla g(y), x-y\rangle \geq \frac{1}{L-m}\|\nabla g(x)-\nabla g(y)\|^{2} \\
\langle\nabla f(x)-\nabla f(y)-m(x-y), x-y\rangle \geq \frac{1}{L-m}\|\nabla f(x)-\nabla f(y)-m(x-y)\|^{2} \\
\left(1+\frac{2 m}{L-m}\right)\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq \frac{1}{L-m}\|\nabla f(x)-\nabla f(y)\|^{2}+\left(\frac{m^{2}}{L-m}+m\right)\|x-y\|^{2} .
\end{gathered}
$$

1.5 Subdifferential

Let f be convex. The subdifferential of f at a point x is a set defined by

$$
\partial f(x)=\{u \in X \mid(\forall y \in X) f(x)+\langle u, y-x\rangle \leq f(y)\}
$$

$\partial f(x)$ is also called subgradients of f at \mathbf{x}.
Proposition 1. (a) If f is convex and differentiable at \mathbf{x}, then $\partial f(x)=\{\nabla f(x)\}$.
(b) If f is convex, then $\partial f(x)$ is a closed convex set.

- Let $f(x)=|x|$. Then $\partial f(0)=[-1,1]$.
- Let \mathcal{C} be a closed convex set on \mathbb{R}^{N}. Then $\partial \mathcal{C}$ is locally rectifiable. Moreover,

$$
\partial \iota_{\mathcal{C}}(x)=\{\lambda n \mid \lambda \geq 0, n \text { is the unit outer normal of } \partial \mathcal{C} \text { at } x\} .
$$

Proposition 1.9. Let $f: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ be convex and closed. Then x^{*} is a minimum of f if and only if $0 \in \partial f\left(x^{*}\right)$.

Proposition 1.10. The subdifferential of a convex function f is a set-valued monotone operator. That is, if $u \in \partial f(x), v \in \partial f(y)$, then $\langle u-v, x-y\rangle \geq 0$.

Proof. From

$$
f(y) \geq f(x)+\langle u, y-x\rangle, \quad f(x) \geq f(y)+\langle v, x-y\rangle
$$

Combining these two inequality, we get monotonicity.
Proposition 1.11. The following statements are equivalent.
(1) f is strongly convex (i.e. $f-\frac{m}{2}\|x\|^{2}$ is convex);
(2) (quadratic lower bound)

$$
f(y) \geq f(x)+\langle u, y-x\rangle+\frac{m}{2}\|x-y\|^{2} \quad \text { for any } x, y
$$

where $u \in \partial f(x)$;
(3) (Strong monotonicity of ∂f):

$$
\langle u-v, x-y\rangle \geq m\|x-y\|^{2}, \quad \text { for any } x, y \text { with any } u \in \partial f(x), v \in \partial f(y) .
$$

1.6 Proximal operator

Definition 1.1. Given a convex function f, the proximal mapping of f is defined as

$$
\operatorname{prox}_{f}(x):=\operatorname{argmin}_{u}\left(f(u)+\frac{1}{2}\|u-x\|^{2}\right) .
$$

Since $f(u)+1 / 2\|u-x\|^{2}$ is strongly convex in u, we get unique minimum. Thus, $\operatorname{prox}_{f}(x)$ is welldefined.

Examples

- Let \mathcal{C} be a convex set. Define indicator function $\iota_{\mathcal{C}}(x)$ as

$$
\iota_{C}(x)= \begin{cases}0 & \text { if } x \in C \\ \infty & \text { otherwise } .\end{cases}
$$

Then $\operatorname{prox}_{\iota_{\mathcal{C}}}(x)$ is the projection of x onto \mathcal{C}.

$$
P_{\mathcal{C}} x \in \mathcal{C} \text { and }(\forall z \in \mathcal{C}),\left\langle z-P_{\mathcal{C}}(x), x-P_{\mathcal{C}}(x)\right\rangle \leq 0
$$

- $f(x)=\|x\|_{1}: \operatorname{prox}_{f}$ is the soft-thresholding:

$$
\operatorname{prox}_{f}(x)_{i}= \begin{cases}x_{i}-1 & \text { if } x_{i} \geq 1 \\ 0 & \text { if }\left|x_{i}\right| \leq 1 \\ x_{i}+1 & \text { if } x_{i} \leq-1\end{cases}
$$

Properties

- Let f be convex. Then

$$
z=\operatorname{prox}_{f}(x)=\operatorname{argmin}_{u}\left(f(u)+\frac{1}{2}\|u-x\|^{2}\right)
$$

if and only if

$$
0 \in \partial f(z)+z-x
$$

or

$$
x \in z+\partial f(z) .
$$

Sometimes, we express this as

$$
\operatorname{prox}_{f}(x)=z=(I+\partial f)^{-1}(x) .
$$

- Co-coercivity:

$$
\left\langle\operatorname{prox}_{f}(x), \operatorname{prox}_{f}(y), x-y\right\rangle \geq\left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|^{2} .
$$

Let $x^{+}=\operatorname{prox}_{f}(x):=\operatorname{argmin}_{z} f(z)+\frac{1}{2}\|z-x\|^{2}$. We have $x-x^{+} \in \partial f\left(x^{+}\right)$. Similarly, $y^{+}:=\operatorname{prox}_{f}(y)$ satisfies $y-y^{+} \in \partial f\left(y^{+}\right)$. From monotonicity of ∂f, we get

$$
\left\langle u-v, x^{+}-y^{+}\right\rangle \geq 0
$$

for any $u \in \partial f\left(x^{+}\right), v \in \partial f\left(y^{+}\right)$. Taking $u=x-x^{+}$and $v=y-y^{+}$, we obtain co-coercivity.

- The co-coercivity of prox_{f} implies that prox $_{f}$ is Lipschitz continuous.

$$
\left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|^{2} \leq\left|\left\langle x-y, \operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\rangle\right|
$$

implies

$$
\left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\| \leq\|x-y\| .
$$

1.7 Conjugate of a convex function

- For a function $f: \mathbb{R}^{N} \rightarrow(-\infty, \infty]$, we define its conjugate f^{*} by

$$
f^{*}(y)=\sup _{x}(\langle x, y\rangle-f(x)) .
$$

Examples

1. $f(x)=\langle a, x\rangle-b, \quad f^{*}(y)=\sup _{x}(\langle y, x\rangle-\langle a, x\rangle+b)= \begin{cases}b & \text { if } y=a \\ \infty & \text { otherwise } .\end{cases}$
2. $f(x)=\left\{\begin{array}{ll}a x & \text { if } x<0 \\ b x & \text { if } x>0 .\end{array}, a<0<b\right.$.

$$
f^{*}(y)= \begin{cases}0 & \text { if } a<y<b \\ \infty & \text { otherwise }\end{cases}
$$

3. $f(x)=\frac{1}{2}\langle x, A x\rangle+\langle b, x\rangle+c$, where A is symmteric and non-singular, then

$$
f^{*}(y)=\frac{1}{2}\left\langle y-b, A^{-1}(y-b)\right\rangle-c .
$$

In general, if $A \succ 0$, then

$$
f^{*}(y)=\frac{1}{2}\left\langle y-b, A^{\dagger}(y-b)\right\rangle-c, \quad A^{\dagger}:=\left(A^{*} A\right)^{-1} A^{*}
$$

and $\operatorname{dom} f^{*}=$ range $A+b$.
4. $f(x)=\frac{1}{p}\|x\|^{p}, p \geq 1$, then $f^{*}(u)=\frac{1}{p^{*}}\|u\|^{p^{*}}$, where $1 / p+1 / p^{*}=1$.
5. $f(x)=e^{x}$,

$$
f^{*}(y)=\sup _{x}\left(x y-e^{x}\right)= \begin{cases}y \ln y-y & \text { if } y>0 \\ 0 & \text { if } y=0 \\ \infty & \text { if } y<0\end{cases}
$$

6. $C=\{x \mid\langle A x, x\rangle \leq 1\}$, where A is s symmetric positive definite matrix. $\iota_{C}^{*}=\sqrt{\left\langle A^{-1} u, u\right\rangle}$.

Properties

- f^{*} is convex and l.s.c.

Note that f^{*} is the supremum of linear functions. We have seen that supremum of a family of closed functions is closed; and supremum of a family of convex functions is also convex.

- Fenchel's inequality:

$$
f(x)+f^{*}(y) \geq\langle x, y\rangle .
$$

This follows directly from the definition of f^{*} :

$$
f^{*}(y)=\sup _{x}(\langle x, y\rangle-f(x)) \geq\langle x, y\rangle-f(x) .
$$

This can be viewed as an extension of the Cauchy inequality

$$
\frac{1}{2}\|x\|^{2}+\frac{1}{2}\|y\|^{2} \geq\langle x, y\rangle .
$$

Proposition 1.12. (1) $f^{* *}(x)$ is closed and convex.
(2) $f^{* *}(x) \leq f(x)$.
(3) $f^{* *}(x)=f(x)$ if and only if f is closed and convex.

Proof. 1. From Fenchel's inequality

$$
\langle x, y\rangle-f^{*}(y) \leq f(x) .
$$

Taking sup in y gives $f^{* *}(x) \leq f(x)$.
2. $f^{* *}(x)=f(x)$ if and only if epi $f^{* *}=\operatorname{epi} f$. We have seen $f^{* *} \leq f$. This leads to eps $f \subset$ eps $f^{* *}$. Suppose f is closed and convex and suppose $\left(x, f^{* *}(x)\right) \notin$ epi f. That is $f^{* *}(x)<f(x)$ and there is a strict separating hyperplane: $\left\{(z, s): a(z-x)+b\left(s-f^{* *}(x)=0\right\}\right.$ such that

$$
\left\langle\binom{ a}{b},\binom{z-x}{s-f^{* *}(x)}\right\rangle \leq c<0 \quad \text { for all }(z, s) \in \operatorname{epi} f
$$

with $b \leq 0$.
3. If $b<0$, we may normalize it such that $(a, b)=(y,-1)$. Then we have

$$
\langle y, z\rangle-s-\langle y, x\rangle+f^{* *}(x) \leq c<0 .
$$

Taking supremum over $(z, s) \in$ epi f,

$$
\sup _{(z, s) \in \mathrm{epi} f}(\langle y, z\rangle-s) \leq \sup _{z}(\langle y, z\rangle-f(z))=f^{*}(y) .
$$

Thus, we get

$$
f^{*}(y)-\langle y, x\rangle+f^{* *}(x) \leq c<0 .
$$

This contradicts to Fenchel's inequality.
4. If $b=0$, choose $\hat{y} \in \operatorname{dom} f^{*}$ and add $\epsilon(\hat{y},-1)$ to (a, b), we can get

$$
\left\langle\binom{ a+\epsilon \hat{y}}{-\epsilon},\binom{z-x}{s-f^{* *}(x)}\right\rangle \leq c_{1}<0
$$

Now, we apply the argument for $b<0$ and get contradiction.
5. If $f^{* *}=f$, then f is closed and convex because $f^{* *}$ is closed and convex no matter what f is.

Proposition 1.13. If f is closed and convex, then

$$
y \in \partial f(x) \Leftrightarrow x \in \partial f^{*}(y) \Leftrightarrow\langle x, y\rangle=f(x)+f^{*}(y) .
$$

Proof. 1.

$$
\begin{aligned}
y \in \partial f(x) & \Leftrightarrow f(z) \geq f(x)+\langle y, z-x\rangle \\
& \Leftrightarrow\langle y, x\rangle-f(x) \geq\langle y, z\rangle-f(z) \text { for all } z \\
& \Leftrightarrow\langle y, x\rangle-f(x)=\sup _{z}(\langle y, z\rangle-f(z)) \\
& \Leftrightarrow\langle y, x\rangle-f(x)=f^{*}(y)
\end{aligned}
$$

2. For the equivalence of $x \in \partial f^{*}(x) \Leftrightarrow\langle x, y\rangle=f(x)+f^{*}(y)$, we use $f^{* *}(x)=f(x)$ and apply the previous argument.

1.8 Method of Lagrange multiplier for constrained optimization problems

A standard convex optimization problem can be formulated as

$$
\begin{aligned}
& \inf _{x} f_{0}(x) \\
& \text { subject to } \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& \text { and } \quad h_{i}(x)=0 \quad i=1, \ldots, p \text {. }
\end{aligned}
$$

We assume the domain

$$
D:=\bigcap_{i} \operatorname{dom} f_{i} \cap \bigcap_{i} \operatorname{dom} h_{i}
$$

is a closed convex set in \mathbb{R}^{n}. A point $x \in D$ satisfying the constraints is called a feasible point. We assume $D \neq \emptyset$ and denote p^{*} the optimal value.

The method of Lagrange multiplier is to introduce augmented variables λ, μ and a Lagrangian so that the problem is transformed to a unconstrained optimization problem. Let us define the Lagrangian to be

$$
L(x, \lambda, \mu)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \mu_{i} h_{i}(x) .
$$

Here, λ and μ are the augmented variables, called the Lagrange multipliers or the dual variables.

Primal problem From this Lagrangian, we notice that

$$
\sup _{\lambda \succeq 0}\left(\sum_{i=1}^{m} \lambda_{i} f_{i}(x)\right)=\iota_{\mathcal{C}_{f}}(x), \quad \mathcal{C}_{f}=\bigcap_{i}\left\{x \mid f_{i}(x) \leq 0\right\}
$$

and

$$
\sup _{\mu}\left(\sum_{i=1}^{p} \mu_{i} h_{i}(x)\right)=\iota_{\mathcal{C}_{h}}(x), \quad \mathcal{C}_{h}=\bigcap_{i}\left\{x \mid h_{i}(x)=0\right\} .
$$

Hence

$$
\sup _{\lambda \succeq 0, \mu} L(x, \lambda, \mu)=f_{0}(x)+\iota_{\mathcal{C}_{f}}(x)+\iota_{\mathcal{C}_{h}}(x)
$$

Thus, the original optimization problem can be written as

$$
p^{*}=\inf _{x \in D}\left(f_{0}(x)+\iota_{\mathcal{C}_{f}}(x)+\iota_{\mathcal{C}_{h}}(x)\right)=\inf _{x \in D} \sup _{\lambda \succeq 0, \mu} L(x, \lambda, \mu) .
$$

This problem is called the primal problem.
Dual problem From this Lagrangian, we define the dual function

$$
g(\lambda, \mu):=\inf _{x \in D} L(x, \lambda, \mu) .
$$

This is an infimum of a family of concave closed functions in λ and μ, thus $g(\lambda, \mu)$ is a concave closed function. The dual problem is

$$
d^{*}=\sup _{\lambda \succeq 0, \mu} g(\lambda, \mu) .
$$

This dual problem is the same as

$$
\sup _{\lambda, \mu} g(\lambda, \mu) \quad \text { subject to } \lambda \succeq 0 .
$$

We refer $(\lambda, \mu) \in \operatorname{dom} g$ with $\lambda \succeq 0$ as dual feasible variables. The primal problem and dual problem are connected by the following duality property.

Weak Duality Property

Proposition 2. For any $\lambda \succeq 0$ and any μ, we have that

$$
g(\lambda, \mu) \leq p^{*}
$$

In other words,

$$
d^{*} \leq p^{*}
$$

Proof. Suppose x is feasible point (i.e. $x \in D$, or equivalently, $f_{i}(x) \leq 0$ and $h_{i}(x)=0$). Then for any $\lambda_{i} \geq 0$ and any μ_{i}, we have

$$
\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \mu_{i} h_{i}(x) \leq 0
$$

This leads to

$$
L(x, \lambda, \mu)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \mu_{i} h_{i}(x) \leq f_{0}(x) .
$$

Hence

$$
g(\lambda, \mu):=\inf _{x \in D} L(x, \lambda, \mu) \leq f_{0}(x), \text { for all } x \in D .
$$

Hence

$$
g(\lambda, \mu) \leq p^{*}
$$

for all feasible pair (λ, μ)
This is called weak duality property. Thus, the weak duality can also be read as

$$
\sup _{\lambda \succeq 0, \mu} \inf _{x \in D} L(x, \lambda, \mu) \leq \inf _{x \in D} \sup _{\lambda \succeq 0, \mu} L(x, \lambda, \mu) .
$$

Definition 1.2. (a) A point x^{*} is called a primal optimal if it minimizes $\sup _{\lambda \succeq 0, \mu} L(x, \lambda, \mu)$.
(b) A dual pair $\left(\lambda^{*}, \mu^{*}\right)$ with $\lambda^{*} \succeq 0$ is said to be a dual optimal if it maximizes $\inf _{x \in D} L(x, \lambda, \mu)$.

Strong duality

Definition 1.3. When $d^{*}=p^{*}$, we say the strong duality holds.
A sufficient condition for strong duality is the Slater condition: there exists a feasible x in relative interior of $\operatorname{dom} D: f_{i}(x)<0, i=1, \ldots, m$ and $h_{i}(x)=0, i=1, \ldots, p$. Such a point x is called a strictly feasible point.

Theorem 1.1. Suppose f_{0}, \ldots, f_{m} are convex, $h(x)=A x-b$, and assume the Slater condition holds: there exists $x \in D^{\circ}$ with $A x-b=0$ and $f_{i}(x)<0$ for all $i=1, \ldots, m$. Then the strong duality

$$
\sup _{\lambda \succeq 0, \mu} \inf _{x \in D} L(x, \lambda, \mu)=\inf _{x \in D} \sup _{\lambda \succeq 0, \mu} L(x, \lambda, \mu) .
$$

holds.
Proof. See pp. 234-236, Boyd's Convex Optimization.

Complementary slackness Suppose there exist $x^{*}, \lambda^{*} \succeq 0$ and μ^{*} such that x^{*} is the optimal primal point and $\left(\lambda^{*}, \mu^{*}\right)$ is the optimal dual point and the strong duality gap $p^{*}-d^{*}=0$. In this case,

$$
\begin{aligned}
f_{0}\left(x^{*}\right) & =g\left(\lambda^{*}, \mu^{*}\right) \\
& :=\inf _{x}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x)+\sum_{i=1}^{p} \mu_{i}^{*} h_{i}(x)\right) \\
& \leq f_{0}\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}\left(x^{*}\right)+\sum_{i=1}^{p} \mu_{i}^{*} h_{i}\left(x^{*}\right) \\
& \leq f_{0}\left(x^{*}\right) .
\end{aligned}
$$

The last line follows from

$$
\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \mu_{i} h_{i}(x) \leq 0
$$

for any feasible pair (x, λ, μ). This leads to

$$
\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}\left(x^{*}\right)+\sum_{i=1}^{p} \mu_{i}^{*} h_{i}\left(x^{*}\right)=0
$$

Since $h_{i}\left(x^{*}\right)=0$ for $i=1, \ldots, p, \lambda_{i} \geq 0$ and $f_{i}\left(x^{*}\right) \leq 0$, we then get

$$
\lambda_{i}^{*} f_{i}\left(x^{*}\right)=0 \quad \text { for all } i=1, \ldots, m .
$$

This is called complementary slackness. It holds for any optimal solutions $\left(x^{*}, \lambda^{*}, \mu^{*}\right)$.

KKT condition

Proposition 1.14. When f_{0}, f_{i} and h_{i} are differentiable, then the optimal points x^{*} to the primal problem and $\left(\lambda^{*}, \mu^{*}\right)$ to the dual problem satisfy the Karush-Kuhn-Tucker (KKT) condition:

$$
\begin{array}{rlrl}
f_{i}\left(x^{*}\right) & \leq 0, & & i=1, \ldots, m \\
\lambda_{i}^{*} & \geq 0, & i=1, \ldots, m \\
\lambda_{i}^{*} f_{i}\left(x^{*}\right) & =0, & & i=1, \ldots, m \\
h_{i}\left(x^{*}\right) & =0, & i=1, \ldots, p \\
\nabla f_{0}\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)+\sum_{i=1}^{p} \mu_{i}^{*} \nabla g_{i}\left(x^{*}\right) & =0 . & &
\end{array}
$$

Remark. If $f_{0}, f_{i}, i=0, \ldots, m$ are closed and convex, but may not be differentiable, then the last KKT condition is replaced by

$$
0 \in \partial f_{0}\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \partial f_{i}\left(x^{*}\right)+\sum_{i=1}^{p} \mu_{i}^{*} \partial g_{i}\left(x^{*}\right) .
$$

We call the triple $\left(x^{*}, \lambda^{*}, \mu^{*}\right)$ satisfies the optimality condition.
Theorem 1.2. If f_{0}, f_{i} are closed and convex and h are affine. Then the KKT condition is also a sufficient condition for optimal solutions. That is, if $(\hat{x}, \hat{\lambda}, \hat{\mu})$ satisfies KKT condition, then \hat{x} is primal optimal and $(\hat{\lambda}, \hat{\mu})$ is dual optimal, and there is zero duality gap.

Proof. 1. From $f_{i}(\hat{x}) \leq 0$ and $h(\hat{x})=0$, we get that \hat{x} is feasible.
2. From $\hat{\lambda}_{i} \geq 0$ and f_{i} being convex and h_{i} are linear, we get

$$
L(x, \hat{\lambda}, \hat{\mu})=f_{0}(x)+\sum_{i} \hat{\lambda}_{i} f_{i}(x)+\sum_{i} \hat{\mu}_{i} h_{i}(x)
$$

is also convex in x.
3. The last KKT condition states that \hat{x} minimizes $L(x, \hat{\lambda}, \hat{\mu})$. Thus

$$
\begin{aligned}
g(\hat{\lambda}, \hat{\mu}) & =L(\hat{x}, \hat{\lambda}, \hat{\mu}) \\
& =f_{0}(\hat{x})+\sum_{i=1}^{m} \hat{\lambda}_{i} f_{i}(\hat{x})+\sum_{i=1}^{p} \hat{\mu}_{i} h_{i}(\hat{x}) \\
& =f_{0}(\hat{x})
\end{aligned}
$$

This shows that \hat{x} and $(\hat{\lambda}, \hat{\mu})$ have zero duality gap and therefore are primal optimal and dual optimal, respectively.

2 Optimization algorithms

2.1 Gradient Methods

Assumptions

- $f \in C^{1}\left(\mathbb{R}^{N}\right)$ and convex
- $\nabla f(x)$ is Lipschitz continuous with parameter L
- Optimal value $f^{*}=\inf _{x} f(x)$ is finite and attained at x^{*}.

Gradient method

- Forward method

$$
x^{k}=x^{k-1}-t_{k} \nabla f\left(x^{k-1}\right)
$$

- Fixed step size: if t_{k} is constant
- Backtracking line search: Choose $0<\beta<1$, initialize $t_{k}=1$; take $t_{k}:=\beta t_{k}$ until

$$
f\left(x-t_{k} \nabla f(x)\right)<f(x)-\frac{1}{2} t_{k}\|\nabla f(x)\|^{2}
$$

- Optimal line search:

$$
t_{k}=\operatorname{argmin}_{t} f(x-t \nabla f(x)) .
$$

- Backward method

$$
x^{k}=x^{k-1}-t_{k} \nabla f\left(x^{k}\right) .
$$

Analysis for the fixed step size case
Proposition 2.15. Suppose $f \in C^{1}$, convex and ∇f is Lipschitz with constant L. If the step size t satisfies $t \leq 1 / L$, then the fixed-step size gradient descent method satisfies

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \leq \frac{1}{2 k t}\left\|x^{0}-x^{*}\right\|^{2}
$$

Remarks

- The sequence $\left\{x^{k}\right\}$ is bounded. Thus, it has convergent subsequence to some \tilde{x} which is an optimal solution.
- If in addition f is strongly convex, then the sequence $\left\{x^{k}\right\}$ converges to the unique optimal solution x^{*} linearly.

Proof.

1. Let $x^{+}:=x-t \nabla f(x)$.
2. From quadratic upper bound:

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|y-x\|^{2}
$$

choose $y=x^{+}$and $t<1 / L$, we get

$$
f\left(x^{+}\right) \leq f(x)+\left(-t+\frac{L t^{2}}{2}\right)\|\nabla f(x)\|^{2} \leq f(x)-\frac{t}{2}\|\nabla f(x)\|^{2} .
$$

3. From

$$
f\left(x^{*}\right) \geq f(x)+\left\langle\nabla f(x), x^{*}-x\right\rangle
$$

we get

$$
\begin{aligned}
f\left(x^{+}\right) & \leq f(x)-\frac{t}{2}\|\nabla f(x)\|^{2} \\
& \leq f^{*}+\left\langle\nabla f(x), x-x^{*}\right\rangle-\frac{t}{2}\|\nabla f(x)\|^{2} \\
& =f^{*}+\frac{1}{2 t}\left(\left\|x-x^{*}\right\|^{2}-\left\|x-x^{*}-t \nabla f(x)\right\|^{2}\right) \\
& =f^{*}+\frac{1}{2 t}\left(\left\|x-x^{*}\right\|^{2}-\left\|x^{+}-x^{*}\right\|^{2}\right) .
\end{aligned}
$$

4. Define $x^{i-1}=x, x^{i}=x^{+}$, sum this inequalities from $i=1, \ldots, k$, we get

$$
\begin{aligned}
\sum_{i=1}^{k}\left(f\left(x^{i}\right)-f^{*}\right) & \leq \frac{1}{2 t} \sum_{i=1}^{k}\left(\left\|x^{i-1}-x^{*}\right\|^{2}-\left\|x^{i}-x^{*}\right\|^{2}\right) \\
& =\frac{1}{2 t}\left(\left\|x^{0}-x^{*}\right\|^{2}-\left\|x^{k}-x^{*}\right\|^{2}\right) \\
& \leq \frac{1}{2 t}\left\|x^{0}-x^{*}\right\|^{2}
\end{aligned}
$$

5. Since $f\left(x^{i}\right)-f^{*}$ is a decreasing sequence, we then get

$$
f\left(x^{k}\right)-f^{*} \leq \frac{1}{k} \sum_{i=1}^{k}\left(f\left(x^{i}\right)-f^{*}\right) \leq \frac{1}{2 k t}\left\|x^{0}-x^{*}\right\|^{2}
$$

Proposition 2.16. Suppose $f \in C^{1}$ and convex. The fixed-step size backward gradient method satisfies

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \leq \frac{1}{2 k t}\left\|x^{0}-x^{*}\right\|^{2} .
$$

Here, no assumption on Lipschitz continuity of $\nabla f(x)$ is needed.

Proof.

1. Define $x^{+}=x-t \nabla f\left(x^{+}\right)$.
2. For any z, we have

$$
f(z) \geq f\left(x^{+}\right)+\left\langle\nabla f\left(x^{+}\right), z-x^{+}\right\rangle=f\left(x^{+}\right)+\left\langle\nabla f\left(x^{+}\right), z-x\right\rangle+t\left\|\nabla f\left(x^{+}\right)\right\|^{2} .
$$

3. Take $z=x$, we get

$$
f\left(x^{+}\right) \leq f(x)-t\left\|\nabla f\left(x^{+}\right)\right\|^{2}
$$

Thus, $f\left(x^{+}\right)<f(x)$ unless $\nabla f\left(x^{+}\right)=0$.
4. Take $z=x^{*}$, we obtain

$$
\begin{aligned}
f\left(x^{+}\right) & \leq f\left(x^{*}\right)+\left\langle\nabla f\left(x^{+}\right), x-x^{*}\right\rangle-t\left\|\nabla f\left(x^{+}\right)\right\|^{2} \\
& \leq f\left(x^{*}\right)+\left\langle\nabla f\left(x^{+}\right), x-x^{*}\right\rangle-\frac{t}{2}\left\|\nabla f\left(x^{+}\right)\right\|^{2} \\
& =f\left(x^{*}\right)-\frac{1}{2 t}\left\|x-x^{*}-t \nabla f\left(x^{+}\right)\right\|^{2}+\frac{1}{2 t}\left\|x-x^{*}\right\|^{2} \\
& =f\left(x^{*}\right)+\frac{1}{2 t}\left(\left\|x-x^{*}\right\|^{2}-\left\|x^{+}-x^{*}\right\|^{2}\right) .
\end{aligned}
$$

Proposition 2.17. Suppose f is strongly convex with parameter m and $\nabla f(x)$ is Lipschitz continuous with parameter L. Suppose the minimum of f is attended at x^{*}. Then the gradient method converges linearly, namely

$$
\begin{aligned}
\left\|x^{k}-x^{*}\right\|^{2} & \leq c^{k}\left\|x^{0}-x^{*}\right\|^{2} \\
f\left(x^{k}\right)-f\left(x^{*}\right) & \leq \frac{c^{k} L}{2}\left\|x^{0}-x^{*}\right\|^{2},
\end{aligned}
$$

where

$$
c=1-t \frac{2 m L}{m+L}<1 \text { if the step size } t \leq \frac{2}{m+L} .
$$

Proof. 1. For $0<t \leq 2 /(m+L)$:

$$
\begin{aligned}
\left\|x^{+}-x^{*}\right\|^{2} & =\left\|x-t \nabla f(x)-x^{*}\right\|^{2} \\
& =\left\|x-x^{*}\right\|^{2}-2 t\left\langle\nabla f(x), x-x^{*}\right\rangle+t^{2}\|\nabla f(x)\|^{2} \\
& \leq\left(1-t \frac{2 m L}{m+L}\right)\left\|x-x^{*}\right\|^{2}+t\left(t-\frac{2}{m+L}\right)\|\nabla f(x)\|^{2} \\
& \leq\left(1-t \frac{2 m L}{m+L}\right)\left\|x-x^{*}\right\|^{2}=c\left\|x-x^{*}\right\|^{2} .
\end{aligned}
$$

t is chosen so that $c<1$. Thus, the sequence $x^{k}-x^{*}$ converges linearly with rate c.
2. From quadratic upper bound

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \leq \frac{L}{2}\left\|x^{k}-x^{*}\right\|^{2} \leq \frac{c^{k} L}{2}\left\|x^{0}-x^{*}\right\|^{2} .
$$

we get $f\left(x^{k}\right)-f\left(x^{*}\right)$ also converges to 0 with linear rate.

2.2 Subgradient method

Assumptions

- f is closed and convex
- Optimal value $f^{*}=\inf _{x} f(x)$ is finite and attained at x^{*}.

Subgradient method

$$
x^{k}=x^{k-1}-t_{k} v_{k-1}, \quad v_{k-1} \in \partial f\left(x^{k-1}\right) .
$$

t_{k} is chosen so that $f\left(x^{k}\right)<f\left(x^{k-1}\right)$.

- This is a forward (sub)gradient method.
- It may not converge.
- If it converges, the optimal rate is

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \leq O(1 / \sqrt{k}),
$$

which is very slow.

2.3 Proximal point method

Assumptions

- f is closed and convex
- Optimal value $f^{*}=\inf _{x} f(x)$ is finite and attained at x^{*}.

Proximal point method:

$$
x^{k}=\operatorname{prox}_{t f}\left(x^{k-1}\right)=x^{k-1}-t G_{t}\left(x^{k-1}\right)
$$

Let $x^{+}:=\operatorname{prox}_{t f}(x):=x-t G_{t}(x)$. From

$$
\operatorname{prox}_{t f}(x):=\operatorname{argmin}_{z}\left(t f(z)+\frac{1}{2}\|z-x\|^{2}\right)
$$

we get

$$
G_{t}(x) \in \partial f\left(x^{+}\right) .
$$

Thus, we may view proximal point method is a backward subgradient method.
Proposition 2.18. Suppose f is closed and convex and suppose an ptimal solution x^{*} of $\min f$ is attainable. Then the proximal point method $x^{k}=\operatorname{prox}_{t f}\left(x^{k-1}\right)$ with $t>0$ satisfies

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \leq \frac{1}{2 k t}\left\|x^{0}-x^{*}\right\| .
$$

Convergence proof:

1. Given x, let $x^{+}:=\operatorname{prox}_{t f}(x)$. Let $G_{t}(x):=\left(x^{+}-x\right) / t$. Then $G_{t}(x) \in \partial f\left(x^{+}\right)$. We then have, for any z,

$$
f(z) \geq f\left(x^{+}\right)+\left\langle G_{t}(x), z-x^{+}\right\rangle=\left\langle G_{t}(x), z-x\right\rangle+t\left\|G_{t}(x)\right\|^{2} .
$$

2. Take $z=x$, we get

$$
f\left(x^{+}\right) \leq f(x)-t\left\|\nabla f\left(x^{+}\right)\right\|^{2}
$$

Thus, $f\left(x^{+}\right)<f(x)$ unless $\nabla f\left(x^{+}\right)=0$.
3. Take $z=x^{*}$, we obtain

$$
\begin{aligned}
f\left(x^{+}\right) & \leq f\left(x^{*}\right)+\left\langle G_{t}(x), x-x^{*}\right\rangle-t\left\|G_{t}(x)\right\|^{2} \\
& \leq f\left(x^{*}\right)+\left\langle G_{t}(x), x-x^{*}\right\rangle-\frac{t}{2}\left\|G_{t}(x)\right\|^{2} \\
& =f\left(x^{*}\right)+\frac{1}{2 t}\left\|x-x^{*}-t G_{t}(x)\right\|^{2}-\frac{1}{2 t}\left\|x-x^{*}\right\|^{2} \\
& =f\left(x^{*}\right)+\frac{1}{2 t}\left(\left\|x^{+}-x^{*}\right\|^{2}-\left\|x-x^{*}\right\|^{2}\right) .
\end{aligned}
$$

4. Taking $x=x^{i-1}, x^{+}=x^{i}$, sum over $i=1, \ldots, k$, we get

$$
\sum_{i=1}^{k}\left(f\left(x^{k}\right)-f\left(x^{*}\right)\right) \leq \frac{1}{2 t}\left(\left\|x^{0}-x^{*}\right\|-\left\|x^{k}-x^{*}\right\|\right) .
$$

Since $f\left(x^{k}\right)$ is non-increasing, we get

$$
k\left(f\left(x^{k}\right)-f\left(x^{*}\right)\right) \leq \sum_{i=1}^{k}\left(f\left(x^{k}\right)-f\left(x^{*}\right)\right) \leq \frac{1}{2 t}\left\|x^{0}-x^{*}\right\| .
$$

2.4 Accelerated Proximal point method

The proximal point method is a first order method. With a small modification, it can be accelerated to a second order method. This is the work of Nesterov in 1980s.

2.5 Fixed point method

- The proximal point method can be viewed as a fixed point of the proximal map:

$$
F(x):=\operatorname{prox}_{f}(x) .
$$

- Let

$$
G(x)=x-x^{+}=(I-F)(x) .
$$

- Both F and G are firmly non-expansive, i.e.

$$
\begin{aligned}
& \langle F(x)-F(y), x-y\rangle \geq\|F(x)-F(y)\|^{2} \\
& \langle G(x)-G(y), x-y\rangle \geq\|G(x)-G(y)\|^{2}
\end{aligned}
$$

Proof.
(1). $x^{+}=\operatorname{prox}_{f}(x)=F(x), y^{+}=\operatorname{prox}_{f}(y)=F(y) . G(x)=x-x^{+} \in \partial f\left(x^{+}\right)$. From monotonicity of ∂f, we have

$$
\left\langle G(x)-G(y), x^{+}-y^{+}\right\rangle \geq 0 .
$$

This gives

$$
\left\langle x^{+}-y^{+}, x-y\right\rangle \geq\left\|x^{+}-y^{+}\right\|^{2} .
$$

That is

$$
\langle F(x)-F(y), x-y\rangle \geq\|F(x)-F(y)\|^{2} .
$$

(2). From $G=I-F$, we have

$$
\begin{aligned}
\langle G(x)-G(y), x-y\rangle & =\langle G(x)-G(y),(F+G)(x)-(F+G)(y)\rangle \\
& =\|G(x)-G(y)\|^{2}+\langle G(x)-G(y), F(x)-F(y)\rangle \\
& =\|G(x)-G(y)\|^{2}+\langle x-F(x)-y+F(y), F(x)-F(y)\rangle \\
& =\|G(x)-G(y)\|^{2}+\langle x-y, F(x)-F(y)\rangle-\|F(x)-F(y)\|^{2} \\
& \geq\|G(x)-G(y)\|^{2}
\end{aligned}
$$

Theorem 2.3. Assume F is firmly non-expansive. Let

$$
y^{k}=\left(1-t_{k}\right) y^{k-1}+t_{k} F\left(y^{k-1}\right), \quad y^{0} \text { arbitrary. }
$$

Suppose a fixed point y^{*} of F exists and

$$
t_{k} \in\left[t_{\min }, t_{\max }\right], \quad 0<t_{\min } \leq t_{\max }<2 .
$$

Then y^{k} converges to a fixed point of F.
Proof. 1. Let us define $G=(I-F)$. We have seen that G is also firmly non-expansive.

$$
y^{k}=y^{k-1}-t_{k} G\left(y^{k-1}\right) .
$$

2. Suppose y^{*} is a fixed point of F, or equivalently, $G\left(y^{*}\right)=0$. From firmly nonexpansive property of F and G, we get (with $y=y^{k-1}, y^{+}=y^{k}, t=t_{k}$)

$$
\begin{aligned}
\left\|y^{+}-y^{*}\right\|^{2}-\left\|y-y^{*}\right\|^{2} & =\left\|y^{+}-y+y-y^{*}\right\|^{2}-\left\|y-y^{*}\right\|^{2} \\
& =2\left\langle y^{+}-y, y-y^{*}\right\rangle+\left\|y^{+}-y\right\|^{2} \\
& =2\left\langle-t G(y), y-y^{*}\right\rangle+t^{2}\|G(y)\|^{2} \\
& =2\left\langle-t\left(G(y)-G\left(y^{*}\right)\right), y-y^{*}\right\rangle+t^{2}\|G(y)\|^{2} \\
& \geq-2 t\left\|G(y)-G\left(y^{*}\right)\right\|^{2}+t^{2}\|G(y)\|^{2} \\
& =-t(2-t)\|G(y)\|^{2} \\
& \leq-M\|G(y)\|^{2} \leq 0 .
\end{aligned}
$$

where $M=t_{\min }\left(2-t_{\max }\right)$.
3. Let us sum this inequality over k :

$$
M \sum_{\ell=0}^{\infty}\left\|G\left(y^{\ell}\right)\right\|^{2} \leq\left\|y^{0}-y^{*}\right\|^{2}
$$

This implies

$$
\left\|G\left(y^{k}\right)\right\| \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

and $\left\|y^{k}-y^{*}\right\|$ is non-increasing; hence y^{k} is bounded; and $\left\|y^{k}-y^{*}\right\| \rightarrow C$ as $k \rightarrow \infty$.
4. Since the sequence $\left\{y^{k}\right\}$ is bounded, any convergent subsequence, say \bar{y}^{k}, converges to \bar{y} satisfying

$$
G(\bar{y})=\lim _{k \rightarrow \infty} G\left(\bar{y}^{k}\right)=0,
$$

by the continuity of G. Thus, any cluster point \bar{y} of $\left\{y^{k}\right\}$ satisfies $G(\bar{y})=0$. Hence, by the previous argument with y^{*} replaced by \bar{y}, the sequence $\left\|y^{k}-\bar{y}\right\|$ is also non-increasing and has a limit.
5. We claim that there is only one limiting point of $\left\{y^{k}\right\}$. Suppose \bar{y}_{1} and \bar{y}_{2} are two cluster points of $\left\{y^{k}\right\}$. Then both sequences $\left\{\left\|y^{k}-\bar{y}_{1}\right\|\right\}$ and $\left\{\left\|y^{k}-\bar{y}_{2}\right\|\right\}$ are non-increasing and have limits. Since \bar{y}_{i} are limiting points, there exist subsequences $\left\{k_{i}^{1}\right\}$ and $\left\{k_{i}^{2}\right\}$ such that $y^{k_{i}^{1}} \rightarrow \bar{y}_{1}$ and $y^{k_{i}^{2}} \rightarrow \bar{y}_{2}$ as $i \rightarrow \infty$. We can choose subsequences again so that we have

$$
k_{i-1}^{2}<k_{i}^{1}<k_{i}^{2}<k_{i+1}^{1} \quad \text { for all } i
$$

With this and the non-increasing of $\left\|y^{k}-\bar{y}_{1}\right\|$ and $\left\|y^{k}-\bar{y}_{2}\right\|$ we get

$$
\left\|y^{k_{i+1}^{1}}-\bar{y}_{1}\right\| \leq\left\|y^{k_{i}^{2}}-\bar{y}_{1}\right\| \leq\left\|y^{k_{i}^{1}}-\bar{y}_{1}\right\| \rightarrow 0 \text { as } i \rightarrow \infty .
$$

On the other hand, $y^{k_{i}^{2}} \rightarrow \bar{y}_{2}$. Therefore, we get $\bar{y}_{1}=\bar{y}_{2}$. This shows that there is only one limiting point, say y^{*}, and $y^{k} \rightarrow y^{*}$.

2.6 Proximal gradient method

This method is to minimize $h(x):=f(x)+g(x)$.

Assumptions:

- $g \in C^{1}$ convex, $\nabla g(x)$ Lipschitz continuous with parameter L
- f is closed and convex

Proximal gradient method: This is also known as the Forward-backward method

$$
x^{k}=\operatorname{prox}_{t f}\left(x^{k-1}-t \nabla g\left(x^{k-1}\right)\right)
$$

We can express prox ${ }_{t f}$ as $(I+t \partial f)^{-1}$. Therefore the proximal gradient method can be expressed as

$$
x^{k}=(I+t \partial f)^{-1}(I-t \nabla g) x^{k-1}
$$

Thus, the proximal gradient method is also called the forward-backward method.
Theorem 2.4. The forward-backward method converges provided $L t \leq 1$.
Proof. 1. Given a point x, define

$$
x^{\prime}=x-t \nabla g(x), \quad x^{+}=\operatorname{prox}_{t f}\left(x^{\prime}\right) .
$$

Then

$$
-\frac{x^{\prime}-x}{t}=\nabla g(x), \quad-\frac{x^{+}-x^{\prime}}{t} \in \partial f\left(x^{+}\right) .
$$

Combining these two, we define a "gradient" $G_{t}(x):=-\frac{x^{+}-x}{t}$. Then $G_{t}(x)-\nabla g(x) \in \partial f\left(x^{+}\right)$.
2. From the quadratic upper bound of g, we have

$$
\begin{aligned}
g\left(x^{+}\right) & \leq g(x)+\left\langle\nabla g(x), x^{+}-x\right\rangle+\frac{L}{2}\left\|x^{+}-x\right\|^{2} \\
& =g(x)+\left\langle\nabla g(x), x^{+}-x\right\rangle+\frac{L t^{2}}{2}\left\|G_{t}(x)\right\|^{2} \\
& \leq g(x)+\left\langle\nabla g(x), x^{+}-x\right\rangle+\frac{t}{2}\left\|G_{t}(x)\right\|^{2},
\end{aligned}
$$

The last inequality holds provided $L t \leq 1$. Combining this with

$$
g(x) \leq g(z)+\langle\nabla g(x), x-z\rangle
$$

we get

$$
g\left(x^{+}\right) \leq g(z)+\left\langle\nabla g(x), x^{+}-z\right\rangle+\frac{t}{2}\left\|G_{t}(x)\right\|^{2} .
$$

3. From first-order condition at x^{+}of f

$$
f(z) \geq f\left(x^{+}\right)+\left\langle p, z-x^{+}\right\rangle \quad \text { for all } p \in \partial f\left(x^{+}\right) .
$$

Choosing $p=G_{t}(x)-\nabla g(x)$, we get

$$
f\left(x^{+}\right) \leq f(z)+\left\langle G_{t}(x)-\nabla g(x), x^{+}-z\right\rangle .
$$

4. Adding the above two inequalities, we get

$$
h\left(x^{+}\right) \leq h(z)+\left\langle G_{t}(x), x^{+}-z\right\rangle+\frac{t}{2}\left\|G_{t}(x)\right\|^{2}
$$

Taking $z=x$, we get

$$
h\left(x^{+}\right) \leq h(x)-\frac{t}{2}\left\|G_{t}(x)\right\|^{2} .
$$

Taking $z=x^{*}$, we get

$$
\begin{aligned}
h\left(x^{+}\right)-h\left(x^{*}\right) & \leq\left\langle G_{t}(x), x^{+}-x^{*}\right\rangle+\frac{t}{2}\left\|G_{t}(x)\right\|^{2} \\
& =\frac{1}{2 t}\left(\left\|x^{+}-x^{*}+t G_{t}(x)\right\|^{2}-\left\|x^{+}-x^{*}\right\|^{2}\right) \\
& =\frac{1}{2 t}\left(\left\|x-x^{*}\right\|^{2}-\left\|x^{+}-x^{*}\right\|^{2}\right)
\end{aligned}
$$

2.7 Augmented Lagrangian Method

Problem

$$
\min F_{P}(x):=f(x)+g(A x)
$$

Equivalent to the primal problem with constraint

$$
\min f(x)+g(y) \quad \text { subject to } \quad A x=y
$$

Assumptions

- f and g are closed and convex.

Examples:

- $g(y)=\iota_{\{b\}}(y)= \begin{cases}0 & \text { if } y=b \\ \infty & \text { otherwise }\end{cases}$

The corresponding $g^{*}(z)=\langle z, b\rangle$.

- $g(y)=\iota_{\mathcal{C}}(y)$
- $g(y)=\|y-b\|^{2}$.

The Lagrangian is

$$
L(x, y, z):=f(x)+g(y)+\langle z, A x-y\rangle .
$$

The primal function is

$$
F_{P}(x)=\inf _{y} \sup _{z} L(x, y, z) .
$$

The primal problem is

$$
\inf _{x} F_{P}(x)=\inf _{x} \inf _{y} \sup _{z} L(x, y, z) .
$$

The dual problem is

$$
\begin{aligned}
\sup _{z} \inf _{x, y} L(x, y, z) & =\sup _{z}\left[\inf _{x}(f(x)+\langle z, A x\rangle)+\inf _{y}(g(y)-\langle z, y\rangle)\right] \\
& =\sup _{z}\left[-\sup _{x}\left(\left\langle-A^{*} z, x\right\rangle-f(x)\right)-\sup _{y}(\langle z, y\rangle-g(y))\right] \\
& =\sup _{z}\left(-f^{*}\left(-A^{*} z\right)-g^{*}(z)\right)=\sup _{z}\left(F_{D}(z)\right)
\end{aligned}
$$

Thus, the dual function $F_{D}(z)$ is defined as

$$
F_{D}(z):=\inf _{x, y} L(x, y, z)=-\left(f^{*}\left(-A^{*} z\right)+g^{*}(z)\right) .
$$

and the dual problem is

$$
\sup _{z} P_{D}(z) .
$$

We shall solve this dual problem by proximal point method:

$$
z^{k}=\operatorname{prox}_{t F_{D}}\left(z^{k-1}\right)=\operatorname{argmax}_{u}\left[-f^{*}\left(-A^{T} u\right)-g^{*}(u)-\frac{1}{2 t}\left\|u-z^{k-1}\right\|^{2}\right]
$$

We have

$$
\begin{aligned}
& \sup _{u}\left(-f^{*}\left(-A^{T} u\right)-g^{*}(u)-\frac{1}{2 t}\|u-z\|^{2}\right) \\
& =\sup _{u}\left(\inf _{x, y} L(x, y, u)-\frac{1}{2 t}\|u-z\|^{2}\right) \\
& =\sup _{u} \inf _{x, y}\left(f(x)+g(y)+\langle u, A x-y\rangle-\frac{1}{2 t}\|u-z\|^{2}\right) \\
& =\inf _{x, y} \sup _{u}\left(f(x)+g(y)+\langle u, A x-y\rangle-\frac{1}{2 t}\|u-z\|^{2}\right) \\
& =\inf _{x, y}\left(f(x)+g(y)+\langle z, A x-y\rangle+\frac{t}{2}\|A x-y\|^{2}\right) .
\end{aligned}
$$

Here, the maximum $u=z+t(A x-y)$. Thus, we define the augmented Lagrangian to be

$$
L_{t}(x, y, z):=f(x)+g(y)+\langle z, A x-y\rangle+\frac{t}{2}\|A x-y\|^{2}
$$

The augmented Lagrangian method is

$$
\begin{aligned}
\left(x^{k}, y^{k}\right) & =\operatorname{argmin}_{x, y} L_{t}\left(x, y, z^{k-1}\right) \\
z^{k} & =z^{k-1}+t\left(A x^{k}-y^{k}\right)
\end{aligned}
$$

Thus, the Augmented Lagrangian method is equivalent to the proximal point method applied to the dual problem:

$$
\sup _{z}\left(-f^{*}\left(-A^{*} z\right)-g^{*}(z)\right) .
$$

2.8 Alternating direction method of multipliers(ADMM)

Problem

$$
\min f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right) \text { subject to } A_{1} x_{1}+A_{2} x_{2}-b=0 .
$$

Assumptions

- f_{i} are closed and convex.

ADMM

- Define

$$
L_{t}\left(x_{1}, x_{2}, z\right):=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\left\langle z, A_{1} x_{1}+A_{2} x_{2}-b\right\rangle+\frac{t}{2}\left\|A_{1} x_{1}+A_{2} x_{2}-b\right\|^{2}
$$

- ADMM:

$$
\begin{aligned}
x_{1}^{k} & =\operatorname{argmin}_{x_{1}} L_{t}\left(x_{1}, x_{2}^{k-1}, z^{k-1}\right) \\
& =\operatorname{argmin}_{x_{1}}\left(f_{1}\left(x_{1}\right)+\frac{t}{2}\left\|A_{1} x_{1}+A_{2} x_{2}^{k-1}-b+\frac{1}{t} z^{k-1}\right\|^{2}\right) \\
x_{2}^{k} & =\operatorname{argmin}_{x_{2}} L_{t}\left(x_{1}^{k}, x_{2}, z^{k-1}\right) \\
& =\operatorname{argmin}_{x_{2}}\left(f_{2}\left(x_{2}\right)+\frac{t}{2}\left\|A_{1} x_{1}^{k}+A_{2} x_{2}-b+\frac{1}{t} z^{k-1}\right\|^{2}\right) \\
z^{k} & =z^{k-1}+t\left(A_{1} x_{1}^{k}+A_{2} x_{2}^{k}-b\right)
\end{aligned}
$$

- ADMM is the Douglas-Rachford method applied to the dual problem:

$$
\max _{z}\left(-\langle b, z\rangle-f_{1}^{*}\left(-A_{1}^{T} z\right)\right)+\left(-f_{2}^{*}\left(-A_{2}^{T} z\right)\right):=-h_{1}(z)-h_{2}(z) .
$$

- Douglas-Rachford method

$$
\begin{gathered}
\min h_{1}(z)+h_{2}(z) \\
z^{k}=\operatorname{prox}_{h_{1}}\left(y^{k-1}\right) \\
y^{k}=y^{k-1}+\operatorname{prox}_{h_{2}}\left(2 z^{k}-y^{k-1}\right)-z^{k} .
\end{gathered}
$$

If we call $\left(I+\partial h_{1}\right)^{-1}=A$ and $\left(I+\partial h_{2}\right)^{-1}=B$. These two operators are firmly nonexpansive. The Douglas-Rachford method is to find the fixed point of $y^{k}=T y^{k-1}$.

$$
T=I+A+B(2 A-I) .
$$

2.9 Primal dual formulation

Consider

$$
\inf _{x}(f(x)+g(A x))
$$

Let

$$
F_{P}(x):=f(x)+g(A x)
$$

Define $y=A x$ consider $\inf _{x, y} f(x)+g(y)$ subject to $y=A x$. Now, introduce method of Lagrange multiplier: consider

$$
L_{P}(x, y, z)=f(x)+g(y)+\langle z, A x-y\rangle
$$

Then

$$
F_{P}(x)=\inf _{y} \sup _{z} L_{P}(x, y, z)
$$

The problem is

$$
\inf _{x} \inf _{y} \sup _{z} L_{P}(x, y, z)
$$

The dual problem is

$$
\sup _{z} \inf _{x, y} L_{P}(x, y, z)
$$

We find that

$$
\inf _{x, y} L_{P}(x, y, z)=-f^{*}\left(-A^{*} z\right)-g^{*}(z) .:=F_{D}(z)
$$

By assuming optimality condition, we have

$$
\sup _{z} \inf _{x, y} L_{P}(x, y, z)=\sup _{z} F_{D}(z)
$$

If we take $\inf _{y}$ first

$$
\inf _{y} L_{P}(x, y, z)=\inf _{y}(f(x)+g(y)+\langle z, A x-y\rangle)=f(x)+\langle z, A x\rangle-g^{*}(z):=L_{P D}(x, z)
$$

Then the problem is

$$
\inf _{x} \sup _{z} L_{P D}(x, z)
$$

On the other hand, we can start from $F_{D}(z):=-f^{*}\left(-A^{*} z\right)-g^{*}(z)$. Consider

$$
L_{D}(z, w, x)=-f^{*}(w)-g^{*}(z)-\left\langle x,-A^{*} z-w\right\rangle
$$

then we have

$$
\sup _{w} \inf _{x} L_{D}(z, w, x)=F_{D}(z)
$$

If instead, we exchange the order of inf and sup,

$$
\sup _{z, w} L_{D}(z, w, x)=\sup _{z, w}\left(-f^{*}(w)-g^{*}(z)-\left\langle x,-A^{*} z-w\right\rangle\right)=f(x)+g(A x)=F_{P}(x)
$$

We can also take $\sup _{w}$ first, then we get
$\sup _{w} L_{D}(z, w, x)=\sup _{w}\left(-f^{*}(w)-g^{*}(z)-\left\langle x,-A^{*} z-w\right\rangle\right)=f(x)-g^{*}(z)+\langle A x, z\rangle=L_{P D}(x, z)$.

Let us summarize

$$
\begin{aligned}
F_{P}(x) & =f(x)+g(A x) \\
F_{D}(z) & =-f^{*}(-A z)-g^{*}(z) \\
L_{P}(x, y, z) & :=f(x)+g(y)+\langle z, A x-y\rangle \\
L_{D}(z, w, x) & :=-f^{*}(w)-g^{*}(z)-\left\langle x,-A^{*} z-w\right\rangle \\
L_{P D}(x, z) & :=\inf _{y} L_{P}(x, y, z)=\sup _{w} L_{D}(z, w, x)=f(x)-g^{*}(z)+\langle z, A x\rangle \\
F_{P}(x) & =\sup _{z} L_{P D}(x, z) \\
F_{D}(z) & =\inf _{x} L_{P D}(x, z)
\end{aligned}
$$

By assuming optimality condition, we have

$$
\inf _{x} \sup _{z} L_{P D}(x, z)=\sup _{z} \inf _{x} L_{P}(x, z) .
$$

