1 Convex Analysis

Main references:

- Vandenberghe (UCLA): EECS236C Optimization methods for large scale systems, http://www.seas.ucla.edu/~vandenbe/ee236c.html
- Parikh and Boyd, Proximal algorithms, slides and note.
 http://stanford.edu/~boyd/papers/prox_algs.html
- Boyd, ADMM http://stanford.edu/~boyd/admm.html
- Simon Foucart and Holger Rauhut, Appendix B.

1.1 Motivations: Convex optimization problems

In applications, we encounter many constrained optimization problems. Examples

• Basis pursuit: exact sparse recovery problem

$$\min \|\mathbf{x}\|_1$$
 subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$.

or robust recovery problem

$$\min \|\mathbf{x}\|_1$$
 subject to $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 \le \epsilon$.

• Image processing:

$$\min \|\nabla \mathbf{x}\|_1$$
 subject to $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 \le \epsilon$.

• The constrained can be a convex set C. That is

$$\min_{x} f_0(x)$$
 subject to $Ax \in \mathcal{C}$

we can define an indicator function

$$\iota_{\mathcal{C}}(x) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ +\infty & \text{otherwise }. \end{cases}$$

We can rewrite the constrained minimization problem as a unconstrained minimization problem:

$$\min_{x} f_0(x) + \iota_{\mathcal{C}}(Ax).$$

This can be reformulated as

$$\min_{x,y} f_0(x) + \iota_{\mathcal{C}}(y) \text{ subject to } Ax = y.$$

• In abstract form, we encounter

$$\min f(x) + g(Ax)$$

we can express it as

$$\min f(x) + g(y)$$
 subject to $Ax = y$.

• For more applications, see Boyd's book.

A standard convex optimization problem can be formulated as

$$\min_{\mathbf{x} \in X} f_0(\mathbf{x})$$
 subject to $\mathbf{A}\mathbf{x} = \mathbf{y}$ and $f_i(\mathbf{x}) \leq b_i, \quad i = 1,...,M$

Here, f_i 's are convex. The space X is a Hilbert space. Here, we just take $X = \mathbb{R}^N$.

1.2 Convex functions

Goal: We want to extend theory of smooth convex analysis to non-differentiable convex functions. Let X be a separable Hilbert space, $f: X \to (-\infty, +\infty]$ be a function.

- **Proper**: f is called proper if $f(x) < \infty$ for at least one x. The domain of f is defined to be: $dom f = \{x | f(x) < \infty\}$.
- Lower Semi-continuity: f is called lower semi-continuous if $\liminf_{x_n \to \bar{x}} f(x_n) \ge f(\bar{x})$.
 - The set epi $f := \{(x, \eta) | f(x) \le \eta\}$ is called the epigraph of f.
 - Prop: f is l.s.c. if and only if epif is closed. Sometimes, we call such f closed. (https://proofwiki.org/wiki/Characterization_of_Lower_Semicontinuity)
 - The indicator function $\iota_{\mathcal{C}}$ of a set \mathcal{C} is closed if and only if \mathcal{C} is closed.

• Convex function

- f is called convex if $dom\ f$ is convex and Jensen's inequality holds: $f((1-\theta)x+\theta y) \leq (1-\theta)f(x)+\theta f(y)$ for all $0\leq \theta \leq 1$ and any $x,y\in X$.
- Proposition: f is convex if and only if epi f is convex.
- First-order condition: for $f \in C^1$, epif being convex is equivalent to $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle$ for all $x, y \in X$.
- Second-order condition: for $f \in C^2$, Jensen's inequality is equivalent to $\nabla^2 f(x) \succeq 0$.
- If f_{α} is a family of convex function, then $\sup_{\alpha} f_{\alpha}$ is again a convex function.

• Strictly convex:

- f is called strictly convex if the strict Jensen inequality holds: for $x \neq y$ and $t \in (0,1)$,

$$f((1-t)x + ty) < (1-t)f(x) + tf(y).$$

- First-order condition: for $f \in C^1$, the strict Jensen inequality is equivalent to $f(y) > f(x) + \langle \nabla f(x), y x \rangle$ for all $x, y \in X$.
- Second-order condition: for $f \in C^2$, $(\nabla^2 f(x) \succ 0) \Longrightarrow$ strict Jensen's inequality is equivalent to .

Proposition 1.1. A convex function $f: \mathbb{R}^N \to \mathbb{R}$ is continuous.

Proposition 1.2. Let $f: \mathbb{R}^N \to (-\infty, \infty]$ be convex. Then

- 1. a local minimizer of f is also a global minimizer;
- 2. the set of minimizers is convex;
- 3. *if f is strictly convex, then the minimizer is unique.*

1.3 Gradients of convex functions

Proposition 1.3 (Monotonicity of $\nabla f(x)$). Suppose $f \in C^1$. Then f is convex if and only if dom f is convex and $\nabla f(x)$ is a monotone operator:

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge 0.$$

Proof. 1. (\Rightarrow) From convexity

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle, \quad f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle.$$

Add these two, we get monotonicity of $\nabla f(x)$.

2. (\Leftarrow) Let g(t) = f(x+t(y-x)). Then $g'(t) = \langle \nabla f(x+t(y-x)), y-x \rangle \geq g'(0)$ by monotonicity. Hence

$$f(y) = g(1) = g(0) + \int_0^1 g'(t) dt \ge g(0) + \int_0^1 g'(0) dt = f(x) + \langle \nabla f(x), y - x \rangle$$

Proposition 1.4. Suppose f is convex and in C^1 . The following statements are equivalent.

(a) Lipschitz continuity of $\nabla f(x)$: there exists an L > 0 such that

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$$
 for all $x, y \in dom f$.

- (b) $g(x) := \frac{L}{2} ||x||^2 f(x)$ is convex.
- (c) Quadratic upper bound

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2.$$

(d) Co-coercivity

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \frac{1}{L} \|\nabla f(x) - \nabla f(y)\|^2.$$

Proof. 1. $(a) \Rightarrow (b)$:

$$|\langle \nabla f(x) - \nabla f(y), x - y \rangle| \le ||\nabla f(x) - \nabla f(y)|| ||x - y|| \le L||x - y||^2$$

$$\Leftrightarrow \langle \nabla g(x) - \nabla g(y), x - y \rangle = \langle L(x - y) - (\nabla f(x) - \nabla f(y)), x - y \rangle \ge 0$$

Therefore, $\nabla g(x)$ is monotonic and thus g is convex.

2. (b) \Leftrightarrow (c): q is convex \Leftrightarrow

$$\begin{split} g(y) &\geq g(x) + \langle \nabla g(x), y - x \rangle \\ \Leftrightarrow & \frac{L}{2} \|y\|^2 - f(y) \geq \frac{L}{2} \|x\|^2 - f(x) + \langle Lx - \nabla f(x), y - x \rangle \\ \Leftrightarrow & f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \|x - y\|^2. \end{split}$$

3. (b) \Rightarrow (d): Define $f_x(z) = f(z) - \langle \nabla f(x), z \rangle$, $f_y(z) = f(z) - \langle \nabla f(y), z \rangle$. From (b), both $(L/2)\|z\|^2 - f_x(z)$ and $(L/2)\|z\|^2 - f_y(z)$ are convex, and z = x minimizes f_x . Thus from the proposition below

$$f(y) - f(x) - \langle \nabla f(x), y - x \rangle = f_x(y) - f_x(x) \ge \frac{1}{2L} \|\nabla f_x(y)\|^2 = \frac{1}{2L} \|\nabla f(y) - \nabla f(x)\|^2.$$

Similarly, z = y minimizes $f_y(z)$, we get

$$f(x) - f(y) - \langle \nabla f(y), x - y \rangle \ge \frac{1}{2L} \|\nabla f(y) - \nabla f(x)\|^2.$$

Adding these two together, we get the co-coercivity.

4. (d) \Rightarrow (a): by Cauchy inequality.

Proposition 1.5. Suppose f is convex and in C^1 with $\nabla f(x)$ being Lipschitz continuous with parameter L. Suppose x^* is a global minimum of f. Then

$$\frac{1}{2L} \|\nabla f(x)\|^2 \le f(x) - f(x^*) \le \frac{L}{2} \|x - x^*\|^2.$$

Proof. 1. Right-hand inequality follows from quadratic upper bound.

2. Left-hand inequality follows by minimizing quadratic upper bound

$$f(x^*) = \inf_{y} f(y) \le \inf_{y} \left(f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2 \right) = f(x) - \frac{1}{2L} ||\nabla f(x)||^2.$$

1.4 Strong convexity

f is called strongly convex if dom f is convex and the strong Jensen inequality holds: there exists a constant m > 0 such that for any $x, y \in dom f$ and $t \in [0, 1]$,

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) - \frac{m}{2}t(1-t)\|x - y\|^2.$$

This definition is equivalent to the convexity of $g(x) := f(x) - \frac{m}{2} ||x||^2$. This comes from the calculation

$$(1-t)\|x\|^2 + t\|y\|^2 - \|(1-t)x + ty\|^2 = t(1-t)\|x - y\|^2.$$

When $f \in C^2$, then strong convexity of f is equivalent to

$$\nabla^2 f(x) \succeq mI \quad \text{ for any } x \in dom f.$$

Proposition 1.6. Suppose $f \in C^1$. The following statements are equivalent:

- (a) f is strongly convex, i.e. $g(x) = f(x) \frac{m}{2}||x||^2$ is convex,
- (b) for any $x, y \in dom f$, $\langle \nabla f(x) \nabla f(y), x y \rangle \ge m ||x y||^2$.
- (c) (quadratic lower bound):

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{m}{2} ||x - y||^2.$$

Proposition 1.7. If f is strongly convex, then f has a unique global minimizer x^* which satisfies

$$\frac{m}{2}||x - x^*||^2 \le f(x) - f(x^*) \le \frac{1}{2m}||\nabla f(x)||^2 \quad \text{for all } x \in dom f.$$

Proof. 1. For lelf-hand inequality, we apply quadratic lower bound

$$f(x) \ge f(x^*) + \langle \nabla f(x^*), x - x^* \rangle + \frac{m}{2} ||x - x^*||^2 = \frac{m}{2} ||x - x^*||^2.$$

2. For right-hand inequality, quadratic lower bound gives

$$f(x^*) = \inf_{y} f(y) \ge \inf_{y} \left(f(x) + \langle \nabla f(x), y - x \rangle + \frac{m}{2} ||y - x||^2 \right) \ge f(x) - \frac{1}{2m} ||\nabla f(x)||^2$$

We take infimum in y then get the left-hand inequality.

Proposition 1.8. Suppose f is both strongly convex with parameter m and $\nabla f(x)$ is Lipschitz continuous with parameter L. Then f satisfies stronger co-coercivity condition

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \frac{mL}{m+L} \|x - y\|^2 + \frac{1}{m+L} \|\nabla f(x) - \nabla f(y)\|^2.$$

Proof. 1. Consider $g(x) = f(x) - \frac{m}{2} ||x||^2$. From strong convexity of f, we get g(x) is convex.

- 2. From Lipschitz of f, we get g is also Lipschitz continuous with parameter L-m.
- 3. We apply co-coercivity to g(x):

$$\langle \nabla g(x) - \nabla g(y), x - y \rangle \ge \frac{1}{L - m} \|\nabla g(x) - \nabla g(y)\|^2$$

$$\langle \nabla f(x) - \nabla f(y) - m(x - y), x - y \rangle \ge \frac{1}{L - m} \|\nabla f(x) - \nabla f(y) - m(x - y)\|^2$$

$$\left(1 + \frac{2m}{L - m}\right) \langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \frac{1}{L - m} \|\nabla f(x) - \nabla f(y)\|^2 + \left(\frac{m^2}{L - m} + m\right) \|x - y\|^2.$$

1.5 Subdifferential

Let f be convex. The subdifferential of f at a point x is a set defined by

$$\partial f(x) = \{u \in X | (\forall u \in X) \ f(x) + \langle u, u - x \rangle < f(y) \}$$

 $\partial f(x)$ is also called subgradients of f at x.

Proposition 1. (a) If f is convex and differentiable at \mathbf{x} , then $\partial f(x) = {\nabla f(x)}.$

- (b) If f is convex, then $\partial f(x)$ is a closed convex set.
 - Let f(x) = |x|. Then $\partial f(0) = [-1, 1]$.
 - Let \mathcal{C} be a closed convex set on \mathbb{R}^N . Then $\partial \mathcal{C}$ is locally rectifiable. Moreover,

$$\partial \iota_{\mathcal{C}}(x) = \{ \lambda n \mid \lambda \geq 0, \ n \text{ is the unit outer normal of } \partial \mathcal{C} \text{ at } x \}.$$

Proposition 1.9. Let $f : \mathbb{R}^n \to (-\infty, \infty]$ be convex and closed. Then x^* is a minimum of f if and only if $0 \in \partial f(x^*)$.

Proposition 1.10. The subdifferential of a convex function f is a set-valued monotone operator. That is, if $u \in \partial f(x)$, $v \in \partial f(y)$, then $\langle u - v, x - y \rangle \geq 0$.

Proof. From

$$f(y) \ge f(x) + \langle u, y - x \rangle, \quad f(x) \ge f(y) + \langle v, x - y \rangle,$$

Combining these two inequality, we get monotonicity.

Proposition 1.11. The following statements are equivalent.

- (1) f is strongly convex (i.e. $f \frac{m}{2} ||x||^2$ is convex);
- (2) (quadratic lower bound)

$$f(y) \ge f(x) + \langle u, y - x \rangle + \frac{m}{2} ||x - y||^2$$
 for any x, y

where $u \in \partial f(x)$;

(3) (Strong monotonicity of ∂f):

$$\langle u-v,x-y\rangle \geq m\|x-y\|^2, \quad \text{ for any } x,y \text{ with any } u\in \partial f(x),v\in \partial f(y).$$

1.6 Proximal operator

Definition 1.1. Given a convex function f, the proximal mapping of f is defined as

$$\operatorname{prox}_f(x) := \operatorname{argmin}_u \left(f(u) + \frac{1}{2} \|u - x\|^2 \right).$$

Since $f(u) + 1/2||u - x||^2$ is strongly convex in u, we get unique minimum. Thus, $\operatorname{prox}_f(x)$ is well-defined.

Examples

• Let \mathcal{C} be a convex set. Define indicator function $\iota_{\mathcal{C}}(x)$ as

$$\iota_C(x) = \begin{cases} 0 & \text{if } x \in C \\ \infty & \text{otherwise} \end{cases}.$$

Then $\operatorname{prox}_{\iota_{\mathcal{C}}}(x)$ is the projection of x onto \mathcal{C} .

$$P_{\mathcal{C}}x \in \mathcal{C}$$
 and $(\forall z \in \mathcal{C}), \langle z - P_{\mathcal{C}}(x), x - P_{\mathcal{C}}(x) \rangle \leq 0$.

• $f(x) = ||x||_1$: prox_f is the soft-thresholding:

$$\operatorname{prox}_f(x)_i = \left\{ \begin{array}{ll} x_i - 1 & \text{if } x_i \geq 1 \\ 0 & \text{if } |x_i| \leq 1 \\ x_i + 1 & \text{if } x_i \leq -1 \end{array} \right.$$

Properties

• Let f be convex. Then

$$z = \operatorname{prox}_f(x) = \operatorname{argmin}_u \left(f(u) + \frac{1}{2} \|u - x\|^2 \right)$$

if and only if

$$0 \in \partial f(z) + z - x$$

or

$$x \in z + \partial f(z)$$
.

Sometimes, we express this as

$$\text{prox}_{f}(x) = z = (I + \partial f)^{-1}(x).$$

• Co-coercivity:

$$\langle \operatorname{prox}_f(x), \operatorname{prox}_f(y), x - y \rangle \ge \|\operatorname{prox}_f(x) - \operatorname{prox}_f(y)\|^2.$$

Let $x^+ = \operatorname{prox}_f(x) := \operatorname{argmin}_z f(z) + \frac{1}{2} \|z - x\|^2$. We have $x - x^+ \in \partial f(x^+)$. Similarly, $y^+ := \operatorname{prox}_f(y)$ satisfies $y - y^+ \in \partial f(y^+)$. From monotonicity of ∂f , we get

$$\langle u - v, x^+ - y^+ \rangle \ge 0$$

for any $u \in \partial f(x^+)$, $v \in \partial f(y^+)$. Taking $u = x - x^+$ and $v = y - y^+$, we obtain co-coercivity.

• The co-coercivity of $prox_f$ implies that $prox_f$ is Lipschitz continuous.

$$\| \mathrm{prox}_f(x) - \mathrm{prox}_f(y) \|^2 \leq |\langle x - y, \mathrm{prox}_f(x) - \mathrm{prox}_f(y) \rangle|$$

implies

$$\|\mathrm{prox}_f(x) - \mathrm{prox}_f(y)\| \leq \|x - y\|.$$

1.7 Conjugate of a convex function

 $\bullet \,$ For a function $f:\mathbb{R}^N \to (-\infty,\infty],$ we define its conjugate f^* by

$$f^*(y) = \sup_{x} (\langle x, y \rangle - f(x)).$$

Examples

1.
$$f(x) = \langle a, x \rangle - b$$
, $f^*(y) = \sup_x (\langle y, x \rangle - \langle a, x \rangle + b) = \begin{cases} b & \text{if } y = a \\ \infty & \text{otherwise.} \end{cases}$

2.
$$f(x) = \begin{cases} ax & \text{if } x < 0 \\ bx & \text{if } x > 0. \end{cases}, a < 0 < b.$$

$$f^*(y) = \begin{cases} 0 & \text{if } a < y < b \\ \infty & \text{otherwise.} \end{cases}$$

3. $f(x) = \frac{1}{2}\langle x, Ax \rangle + \langle b, x \rangle + c$, where A is symmetric and non-singular, then

$$f^*(y) = \frac{1}{2} \langle y - b, A^{-1}(y - b) \rangle - c.$$

In general, if $A \succ 0$, then

$$f^*(y) = \frac{1}{2}\langle y - b, A^{\dagger}(y - b)\rangle - c, \quad A^{\dagger} := (A^*A)^{-1}A^*$$

and dom $f^* = \text{range } A + b$.

- 4. $f(x) = \frac{1}{p} ||x||^p$, $p \ge 1$, then $f^*(u) = \frac{1}{p^*} ||u||^{p^*}$, where $1/p + 1/p^* = 1$.
- 5. $f(x) = e^x$,

$$f^*(y) = \sup_{x} (xy - e^x) = \begin{cases} y \ln y - y & \text{if } y > 0\\ 0 & \text{if } y = 0\\ \infty & \text{if } y < 0 \end{cases}$$

6. $C = \{x | \langle Ax, x \rangle \leq 1\}$, where A is s symmetric positive definite matrix. $\iota_C^* = \sqrt{\langle A^{-1}u, u \rangle}$.

Properties

• f^* is convex and l.s.c.

Note that f^* is the supremum of linear functions. We have seen that supremum of a family of closed functions is closed; and supremum of a family of convex functions is also convex.

• Fenchel's inequality:

$$f(x) + f^*(y) \ge \langle x, y \rangle.$$

This follows directly from the definition of f^* :

$$f^*(y) = \sup_{x} (\langle x, y \rangle - f(x)) \ge \langle x, y \rangle - f(x).$$

This can be viewed as an extension of the Cauchy inequality

$$\frac{1}{2}||x||^2 + \frac{1}{2}||y||^2 \ge \langle x, y \rangle.$$

Proposition 1.12. (1) $f^{**}(x)$ is closed and convex.

- (2) $f^{**}(x) < f(x)$.
- (3) $f^{**}(x) = f(x)$ if and only if f is closed and convex.

Proof. 1. From Fenchel's inequality

$$\langle x, y \rangle - f^*(y) \le f(x).$$

Taking sup in y gives $f^{**}(x) \le f(x)$

2. $f^{**}(x) = f(x)$ if and only if $\operatorname{epi} f^{**} = \operatorname{epi} f$. We have seen $f^{**} \leq f$. This leads to $\operatorname{eps} f \subset \operatorname{eps} f^{**}$. Suppose f is closed and convex and suppose $(x, f^{**}(x)) \notin \operatorname{epi} f$. That is $f^{**}(x) < f(x)$ and there is a strict separating hyperplane: $\{(z, s) : a(z - x) + b(s - f^{**}(x)) = 0\}$ such that

$$\left\langle \left(\begin{array}{c} a \\ b \end{array}\right), \left(\begin{array}{c} z-x \\ s-f^{**}(x) \end{array}\right) \right\rangle \leq c < 0 \quad \text{ for all } (z,s) \in \operatorname{epi} f$$

with b < 0.

3. If b < 0, we may normalize it such that (a, b) = (y, -1). Then we have

$$\langle y, z \rangle - s - \langle y, x \rangle + f^{**}(x) \le c < 0.$$

Taking supremum over $(z, s) \in \operatorname{epi} f$,

$$\sup_{(z,s)\in \operatorname{epi} f} (\langle y,z\rangle - s) \le \sup_{z} (\langle y,z\rangle - f(z)) = f^*(y).$$

Thus, we get

$$f^*(y) - \langle y, x \rangle + f^{**}(x) \le c < 0.$$

This contradicts to Fenchel's inequality.

4. If b = 0, choose $\hat{y} \in \text{dom } f^*$ and add $\epsilon(\hat{y}, -1)$ to (a, b), we can get

$$\left\langle \left(\begin{array}{c} a + \epsilon \hat{y} \\ -\epsilon \end{array}\right), \left(\begin{array}{c} z - x \\ s - f^{**}(x) \end{array}\right) \right\rangle \leq c_1 < 0$$

Now, we apply the argument for b < 0 and get contradiction.

5. If $f^{**} = f$, then f is closed and convex because f^{**} is closed and convex no matter what f is.

Proposition 1.13. If f is closed and convex, then

$$y \in \partial f(x) \Leftrightarrow x \in \partial f^*(y) \Leftrightarrow \langle x, y \rangle = f(x) + f^*(y).$$

Proof. 1.

$$y \in \partial f(x) \Leftrightarrow f(z) \ge f(x) + \langle y, z - x \rangle$$

$$\Leftrightarrow \langle y, x \rangle - f(x) \ge \langle y, z \rangle - f(z) \text{ for all } z$$

$$\Leftrightarrow \langle y, x \rangle - f(x) = \sup_{z} (\langle y, z \rangle - f(z))$$

$$\Leftrightarrow \langle y, x \rangle - f(x) = f^*(y)$$

2. For the equivalence of $x \in \partial f^*(x) \Leftrightarrow \langle x,y \rangle = f(x) + f^*(y)$, we use $f^{**}(x) = f(x)$ and apply the previous argument.

1.8 Method of Lagrange multiplier for constrained optimization problems

A standard convex optimization problem can be formulated as

$$\inf_{x} f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i = 1, ..., m$ and $h_i(x) = 0 \quad i = 1, ..., p$.

We assume the domain

$$D:=\bigcap_{i}\mathrm{dom}f_{i}\cap\bigcap_{i}\mathrm{dom}h_{i}$$

is a closed convex set in \mathbb{R}^n . A point $x \in D$ satisfying the constraints is called a feasible point. We assume $D \neq \emptyset$ and denote p^* the optimal value.

The method of Lagrange multiplier is to introduce augmented variables λ , μ and a Lagrangian so that the problem is transformed to a unconstrained optimization problem. Let us define the Lagrangian to be

$$L(x, \lambda, \mu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \mu_i h_i(x).$$

Here, λ and μ are the augmented variables, called the Lagrange multipliers or the dual variables.

Primal problem From this Lagrangian, we notice that

$$\sup_{\lambda \succeq 0} \left(\sum_{i=1}^{m} \lambda_i f_i(x) \right) = \iota_{\mathcal{C}_f}(x), \quad \mathcal{C}_f = \bigcap_i \{ x | f_i(x) \le 0 \}$$

and

$$\sup_{\mu} \left(\sum_{i=1}^{p} \mu_i h_i(x) \right) = \iota_{\mathcal{C}_h}(x), \quad \mathcal{C}_h = \bigcap_{i} \{ x | h_i(x) = 0 \}.$$

Hence

$$\sup_{\lambda \succeq 0, \mu} L(x, \lambda, \mu) = f_0(x) + \iota_{\mathcal{C}_f}(x) + \iota_{\mathcal{C}_h}(x)$$

Thus, the original optimization problem can be written as

$$p^* = \inf_{x \in D} \left(f_0(x) + \iota_{\mathcal{C}_f}(x) + \iota_{\mathcal{C}_h}(x) \right) = \inf_{x \in D} \sup_{\lambda \succeq 0, \mu} L(x, \lambda, \mu).$$

This problem is called the primal problem.

Dual problem From this Lagrangian, we define the dual function

$$g(\lambda, \mu) := \inf_{x \in D} L(x, \lambda, \mu).$$

This is an infimum of a family of concave closed functions in λ and μ , thus $g(\lambda, \mu)$ is a concave closed function. The dual problem is

$$d^* = \sup_{\lambda \succeq 0, \mu} g(\lambda, \mu).$$

This dual problem is the same as

$$\sup_{\lambda,\mu}g(\lambda,\mu)\quad\text{ subject to }\lambda\succeq 0.$$

We refer $(\lambda, \mu) \in \text{dom } g$ with $\lambda \succeq 0$ as dual feasible variables. The primal problem and dual problem are connected by the following duality property.

Weak Duality Property

Proposition 2. For any $\lambda \succeq 0$ and any μ , we have that

$$q(\lambda, \mu) < p^*$$
.

In other words,

$$d^* \le p^*$$

Proof. Suppose x is feasible point (i.e. $x \in D$, or equivalently, $f_i(x) \le 0$ and $h_i(x) = 0$). Then for any $\lambda_i \ge 0$ and any μ_i , we have

$$\sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \mu_i h_i(x) \le 0.$$

This leads to

$$L(x, \lambda, \mu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \mu_i h_i(x) \le f_0(x).$$

Hence

$$g(\lambda,\mu) := \inf_{x \in D} L(x,\lambda,\mu) \le f_0(x), \text{ for all } x \in D.$$

Hence

$$g(\lambda, \mu) \le p^*$$

for all feasible pair (λ, μ)

This is called weak duality property. Thus, the weak duality can also be read as

$$\sup_{\lambda\succeq 0,\mu}\inf_{x\in D}L(x,\lambda,\mu)\leq\inf_{x\in D}\sup_{\lambda\succeq 0,\mu}L(x,\lambda,\mu).$$

Definition 1.2. (a) A point x^* is called a primal optimal if it minimizes $\sup_{\lambda \succeq 0, \mu} L(x, \lambda, \mu)$.

(b) A dual pair (λ^*, μ^*) with $\lambda^* \succeq 0$ is said to be a dual optimal if it maximizes $\inf_{x \in D} L(x, \lambda, \mu)$.

Strong duality

Definition 1.3. When $d^* = p^*$, we say the strong duality holds.

A sufficient condition for strong duality is the Slater condition: there exists a feasible x in relative interior of domD: $f_i(x) < 0$, i = 1, ..., m and $h_i(x) = 0$, i = 1, ..., p. Such a point x is called a strictly feasible point.

Theorem 1.1. Suppose $f_0, ..., f_m$ are convex, h(x) = Ax - b, and assume the Slater condition holds: there exists $x \in D^{\circ}$ with Ax - b = 0 and $f_i(x) < 0$ for all i = 1, ..., m. Then the strong duality

$$\sup_{\lambda \succeq 0, \mu} \inf_{x \in D} L(x, \lambda, \mu) = \inf_{x \in D} \sup_{\lambda \succeq 0, \mu} L(x, \lambda, \mu).$$

holds.

Proof. See pp. 234-236, Boyd's Convex Optimization.

Complementary slackness Suppose there exist x^* , $\lambda^* \succeq 0$ and μ^* such that x^* is the optimal primal point and (λ^*, μ^*) is the optimal dual point and the strong duality gap $p^* - d^* = 0$. In this case,

$$f_0(x^*) = g(\lambda^*, \mu^*)$$

$$:= \inf_x \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \mu_i^* h_i(x) \right)$$

$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \mu_i^* h_i(x^*)$$

$$\leq f_0(x^*).$$

The last line follows from

$$\sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \mu_i h_i(x) \le 0.$$

for any feasible pair (x, λ, μ) . This leads to

$$\sum_{i=1}^{m} \lambda_i^* f_i(x^*) + \sum_{i=1}^{p} \mu_i^* h_i(x^*) = 0.$$

Since $h_i(x^*) = 0$ for i = 1, ..., p, $\lambda_i \ge 0$ and $f_i(x^*) \le 0$, we then get

$$\lambda_i^* f_i(x^*) = 0$$
 for all $i = 1, ..., m$.

This is called complementary slackness. It holds for any optimal solutions (x^*, λ^*, μ^*) .

KKT condition

Proposition 1.14. When f_0 , f_i and h_i are differentiable, then the optimal points x^* to the primal problem and (λ^*, μ^*) to the dual problem satisfy the Karush-Kuhn-Tucker (KKT) condition:

$$f_i(x^*) \leq 0, \quad i = 1, ..., m$$

$$\lambda_i^* \geq 0, \quad i = 1, ..., m,$$

$$\lambda_i^* f_i(x^*) = 0, \quad i = 1, ..., m$$

$$h_i(x^*) = 0, \quad i = 1, ..., p$$

$$\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{i=1}^p \mu_i^* \nabla g_i(x^*) = 0.$$

Remark. If $f_0, f_i, i = 0, ..., m$ are closed and convex, but may not be differentiable, then the last KKT condition is replaced by

$$0 \in \partial f_0(x^*) + \sum_{i=1}^m \lambda_i^* \partial f_i(x^*) + \sum_{i=1}^p \mu_i^* \partial g_i(x^*).$$

We call the triple (x^*, λ^*, μ^*) satisfies the optimality condition.

Theorem 1.2. If f_0 , f_i are closed and convex and h are affine. Then the KKT condition is also a sufficient condition for optimal solutions. That is, if $(\hat{x}, \hat{\lambda}, \hat{\mu})$ satisfies KKT condition, then \hat{x} is primal optimal and $(\hat{\lambda}, \hat{\mu})$ is dual optimal, and there is zero duality gap.

Proof. 1. From $f_i(\hat{x}) \leq 0$ and $h(\hat{x}) = 0$, we get that \hat{x} is feasible.

2. From $\lambda_i \geq 0$ and f_i being convex and h_i are linear, we get

$$L(x, \hat{\lambda}, \hat{\mu}) = f_0(x) + \sum_i \hat{\lambda}_i f_i(x) + \sum_i \hat{\mu}_i h_i(x)$$

is also convex in x.

3. The last KKT condition states that \hat{x} minimizes $L(x, \hat{\lambda}, \hat{\mu})$. Thus

$$g(\hat{\lambda}, \hat{\mu}) = L(\hat{x}, \hat{\lambda}, \hat{\mu})$$

$$= f_0(\hat{x}) + \sum_{i=1}^m \hat{\lambda}_i f_i(\hat{x}) + \sum_{i=1}^p \hat{\mu}_i h_i(\hat{x})$$

$$= f_0(\hat{x})$$

This shows that \hat{x} and $(\hat{\lambda}, \hat{\mu})$ have zero duality gap and therefore are primal optimal and dual optimal, respectively.

Optimization algorithms 2

Gradient Methods

Assumptions

2.1

• $f \in C^1(\mathbb{R}^N)$ and convex

• $\nabla f(x)$ is Lipschitz continuous with parameter L

• Optimal value $f^* = \inf_x f(x)$ is finite and attained at x^* .

Gradient method

Forward method

$$x^k = x^{k-1} - t_k \nabla f(x^{k-1})$$

- Fixed step size: if t_k is constant

– Backtracking line search: Choose $0 < \beta < 1$, initialize $t_k = 1$; take $t_k := \beta t_k$ until

$$f(x - t_k \nabla f(x)) < f(x) - \frac{1}{2} t_k ||\nabla f(x)||^2$$

- Optimal line search:

$$t_k = \operatorname{argmin}_t f(x - t\nabla f(x)).$$

• Backward method

$$x^k = x^{k-1} - t_k \nabla f(x^k).$$

Analysis for the fixed step size case

Proposition 2.15. Suppose $f \in C^1$, convex and ∇f is Lipschitz with constant L. If the step size t satisfies $t \leq 1/L$, then the fixed-step size gradient descent method satisfies

$$f(x^k) - f(x^*) \le \frac{1}{2kt} ||x^0 - x^*||^2$$

Remarks

- The sequence $\{x^k\}$ is bounded. Thus, it has convergent subsequence to some \tilde{x} which is an optimal solution.
- If in addition f is strongly convex, then the sequence $\{x^k\}$ converges to the unique optimal solution x^* linearly.

Proof.

- 1. Let $x^+ := x t \nabla f(x)$.
- 2. From quadratic upper bound:

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2$$

choose $y = x^+$ and t < 1/L, we get

$$f(x^+) \le f(x) + \left(-t + \frac{Lt^2}{2}\right) \|\nabla f(x)\|^2 \le f(x) - \frac{t}{2} \|\nabla f(x)\|^2.$$

3. From

$$f(x^*) \ge f(x) + \langle \nabla f(x), x^* - x \rangle$$

we get

$$f(x^{+}) \leq f(x) - \frac{t}{2} \|\nabla f(x)\|^{2}$$

$$\leq f^{*} + \langle \nabla f(x), x - x^{*} \rangle - \frac{t}{2} \|\nabla f(x)\|^{2}$$

$$= f^{*} + \frac{1}{2t} (\|x - x^{*}\|^{2} - \|x - x^{*} - t\nabla f(x)\|^{2})$$

$$= f^{*} + \frac{1}{2t} (\|x - x^{*}\|^{2} - \|x^{+} - x^{*}\|^{2}).$$

4. Define $x^{i-1} = x$, $x^i = x^+$, sum this inequalities from i = 1, ..., k, we get

$$\sum_{i=1}^{k} (f(x^{i}) - f^{*}) \leq \frac{1}{2t} \sum_{i=1}^{k} (\|x^{i-1} - x^{*}\|^{2} - \|x^{i} - x^{*}\|^{2})$$

$$= \frac{1}{2t} (\|x^{0} - x^{*}\|^{2} - \|x^{k} - x^{*}\|^{2})$$

$$\leq \frac{1}{2t} \|x^{0} - x^{*}\|^{2}$$

5. Since $f(x^i) - f^*$ is a decreasing sequence, we then get

$$f(x^k) - f^* \le \frac{1}{k} \sum_{i=1}^k (f(x^i) - f^*) \le \frac{1}{2kt} ||x^0 - x^*||^2.$$

Proposition 2.16. Suppose $f \in C^1$ and convex. The fixed-step size backward gradient method satisfies

$$f(x^k) - f(x^*) \le \frac{1}{2kt} ||x^0 - x^*||^2.$$

Here, no assumption on Lipschitz continuity of $\nabla f(x)$ is needed.

Proof.

- 1. Define $x^+ = x t\nabla f(x^+)$.
- 2. For any z, we have

$$f(z) \ge f(x^+) + \langle \nabla f(x^+), z - x^+ \rangle = f(x^+) + \langle \nabla f(x^+), z - x \rangle + t \|\nabla f(x^+)\|^2$$

3. Take z = x, we get

$$f(x^+) \le f(x) - t \|\nabla f(x^+)\|^2$$

Thus, $f(x^+) < f(x)$ unless $\nabla f(x^+) = 0$.

4. Take $z = x^*$, we obtain

$$f(x^{+}) \leq f(x^{*}) + \langle \nabla f(x^{+}), x - x^{*} \rangle - t \| \nabla f(x^{+}) \|^{2}$$

$$\leq f(x^{*}) + \langle \nabla f(x^{+}), x - x^{*} \rangle - \frac{t}{2} \| \nabla f(x^{+}) \|^{2}$$

$$= f(x^{*}) - \frac{1}{2t} \| x - x^{*} - t \nabla f(x^{+}) \|^{2} + \frac{1}{2t} \| x - x^{*} \|^{2}$$

$$= f(x^{*}) + \frac{1}{2t} \left(\| x - x^{*} \|^{2} - \| x^{+} - x^{*} \|^{2} \right).$$

Proposition 2.17. Suppose f is strongly convex with parameter m and $\nabla f(x)$ is Lipschitz continuous with parameter L. Suppose the minimum of f is attended at x^* . Then the gradient method converges linearly, namely

$$||x^{k} - x^{*}||^{2} \le c^{k} ||x^{0} - x^{*}||^{2}$$
$$f(x^{k}) - f(x^{*}) \le \frac{c^{k} L}{2} ||x^{0} - x^{*}||^{2},$$

where

$$c=1-t\frac{2mL}{m+L}<1 \text{ if the step size } t\leq \frac{2}{m+L}.$$

Proof. 1. For $0 < t \le 2/(m+L)$:

$$||x^{+} - x^{*}||^{2} = ||x - t\nabla f(x) - x^{*}||^{2}$$

$$= ||x - x^{*}||^{2} - 2t\langle\nabla f(x), x - x^{*}\rangle + t^{2}||\nabla f(x)||^{2}$$

$$\leq \left(1 - t\frac{2mL}{m+L}\right)||x - x^{*}||^{2} + t\left(t - \frac{2}{m+L}\right)||\nabla f(x)||^{2}$$

$$\leq \left(1 - t\frac{2mL}{m+L}\right)||x - x^{*}||^{2} = c||x - x^{*}||^{2}.$$

t is chosen so that c < 1. Thus, the sequence $x^k - x^*$ converges linearly with rate c.

2. From quadratic upper bound

$$f(x^k) - f(x^*) \le \frac{L}{2} ||x^k - x^*||^2 \le \frac{c^k L}{2} ||x^0 - x^*||^2.$$

we get $f(x^k) - f(x^*)$ also converges to 0 with linear rate.

2.2 Subgradient method

Assumptions

- f is closed and convex
- Optimal value $f^* = \inf_x f(x)$ is finite and attained at x^* .

Subgradient method

$$x^{k} = x^{k-1} - t_k v_{k-1}, \quad v_{k-1} \in \partial f(x^{k-1}).$$

 t_k is chosen so that $f(x^k) < f(x^{k-1})$.

- This is a forward (sub)gradient method.
- It may not converge.
- If it converges, the optimal rate is

$$f(x^k) - f(x^*) \le O(1/\sqrt{k}),$$

which is very slow.

2.3 Proximal point method

Assumptions

- f is closed and convex
- Optimal value $f^* = \inf_x f(x)$ is finite and attained at x^* .

Proximal point method:

$$x^k = \operatorname{prox}_{tf}(x^{k-1}) = x^{k-1} - tG_t(x^{k-1})$$

Let $x^+ := \operatorname{prox}_{tf}(x) := x - tG_t(x)$. From

$$\operatorname{prox}_{tf}(x) := \operatorname{argmin}_z \left(tf(z) + \frac{1}{2} \|z - x\|^2 \right)$$

we get

$$G_t(x) \in \partial f(x^+).$$

Thus, we may view proximal point method is a backward subgradient method.

Proposition 2.18. Suppose f is closed and convex and suppose an ptimal solution x^* of min f is attainable. Then the proximal point method $x^k = prox_{tf}(x^{k-1})$ with t > 0 satisfies

$$f(x^k) - f(x^*) \le \frac{1}{2kt} ||x^0 - x^*||.$$

Convergence proof:

1. Given x, let $x^+ := \operatorname{prox}_{tf}(x)$. Let $G_t(x) := (x^+ - x)/t$. Then $G_t(x) \in \partial f(x^+)$. We then have, for any z,

$$f(z) \ge f(x^+) + \langle G_t(x), z - x^+ \rangle = \langle G_t(x), z - x \rangle + t \|G_t(x)\|^2$$
.

2. Take z = x, we get

$$f(x^+) \le f(x) - t \|\nabla f(x^+)\|^2$$

Thus, $f(x^+) < f(x)$ unless $\nabla f(x^+) = 0$.

3. Take $z = x^*$, we obtain

$$f(x^{+}) \leq f(x^{*}) + \langle G_{t}(x), x - x^{*} \rangle - t \|G_{t}(x)\|^{2}$$

$$\leq f(x^{*}) + \langle G_{t}(x), x - x^{*} \rangle - \frac{t}{2} \|G_{t}(x)\|^{2}$$

$$= f(x^{*}) + \frac{1}{2t} \|x - x^{*} - tG_{t}(x)\|^{2} - \frac{1}{2t} \|x - x^{*}\|^{2}$$

$$= f(x^{*}) + \frac{1}{2t} (\|x^{+} - x^{*}\|^{2} - \|x - x^{*}\|^{2}).$$

4. Taking $x=x^{i-1},\,x^+=x^i,\,\mathrm{sum}\;\mathrm{over}\;i=1,...,k,\,\mathrm{we}\;\mathrm{get}$

$$\sum_{i=1}^{k} (f(x^k) - f(x^*)) \le \frac{1}{2t} \left(\|x^0 - x^*\| - \|x^k - x^*\| \right).$$

Since $f(x^k)$ is non-increasing, we get

$$k(f(x^k) - f(x^*)) \le \sum_{i=1}^k (f(x^k) - f(x^*)) \le \frac{1}{2t} ||x^0 - x^*||.$$

2.4 Accelerated Proximal point method

The proximal point method is a first order method. With a small modification, it can be accelerated to a second order method. This is the work of Nesterov in 1980s.

2.5 Fixed point method

• The proximal point method can be viewed as a fixed point of the proximal map:

$$F(x) := \mathrm{prox}_f(x).$$

• Let

$$G(x) = x - x^{+} = (I - F)(x).$$

• Both F and G are firmly non-expansive, i.e.

$$\langle F(x) - F(y), x - y \rangle \ge ||F(x) - F(y)||^2$$

$$\langle G(x) - G(y), x - y \rangle \ge ||G(x) - G(y)||^2$$

Proof.

(1). $x^+ = \operatorname{prox}_f(x) = F(x), \ y^+ = \operatorname{prox}_f(y) = F(y). \ G(x) = x - x^+ \in \partial f(x^+).$ From monotonicity of ∂f , we have

$$\langle G(x) - G(y), x^+ - y^+ \rangle \ge 0.$$

This gives

$$\langle x^+ - y^+, x - y \rangle \ge ||x^+ - y^+||^2.$$

That is

$$\langle F(x) - F(y), x - y \rangle \ge ||F(x) - F(y)||^2.$$

(2). From G = I - F, we have

$$\begin{split} \langle G(x) - G(y), x - y \rangle &= \langle G(x) - G(y), (F + G)(x) - (F + G)(y) \rangle \\ &= \|G(x) - G(y)\|^2 + \langle G(x) - G(y), F(x) - F(y) \rangle \\ &= \|G(x) - G(y)\|^2 + \langle x - F(x) - y + F(y), F(x) - F(y) \rangle \\ &= \|G(x) - G(y)\|^2 + \langle x - y, F(x) - F(y) \rangle - \|F(x) - F(y)\|^2 \\ &\geq \|G(x) - G(y)\|^2 \end{split}$$

Theorem 2.3. Assume F is firmly non-expansive. Let

$$y^k = (1 - t_k)y^{k-1} + t_k F(y^{k-1}), \quad y^0 \text{ arbitrary.}$$

Suppose a fixed point y^* of F exists and

$$t_k \in [t_{min}, t_{max}], \quad 0 < t_{min} \le t_{max} < 2.$$

Then y^k converges to a fixed point of F.

Proof. 1. Let us define G = (I - F). We have seen that G is also firmly non-expansive.

$$y^k = y^{k-1} - t_k G(y^{k-1}).$$

2. Suppose y^* is a fixed point of F, or equivalently, $G(y^*) = 0$. From firmly nonexpansive property of F and G, we get (with $y = y^{k-1}$, $y^+ = y^k$, $t = t_k$)

$$\begin{split} \|y^{+} - y^{*}\|^{2} - \|y - y^{*}\|^{2} &= \|y^{+} - y + y - y^{*}\|^{2} - \|y - y^{*}\|^{2} \\ &= 2\langle y^{+} - y, y - y^{*} \rangle + \|y^{+} - y\|^{2} \\ &= 2\langle -tG(y), y - y^{*} \rangle + t^{2}\|G(y)\|^{2} \\ &= 2\langle -t(G(y) - G(y^{*})), y - y^{*} \rangle + t^{2}\|G(y)\|^{2} \\ &\geq -2t\|G(y) - G(y^{*})\|^{2} + t^{2}\|G(y)\|^{2} \\ &= -t(2 - t)\|G(y)\|^{2} \\ &\leq -M\|G(y)\|^{2} \leq 0. \end{split}$$

where $M = t_{min}(2 - t_{max})$.

3. Let us sum this inequality over k:

$$M \sum_{\ell=0}^{\infty} \|G(y^{\ell})\|^2 \le \|y^0 - y^*\|^2$$

This implies

$$||G(y^k)|| \to 0$$
 as $k \to \infty$,

and $||y^k - y^*||$ is non-increasing; hence y^k is bounded; and $||y^k - y^*|| \to C$ as $k \to \infty$.

4. Since the sequence $\{y^k\}$ is bounded, any convergent subsequence, say \bar{y}^k , converges to \bar{y} satisfying

$$G(\bar{y}) = \lim_{k \to \infty} G(\bar{y}^k) = 0,$$

by the continuity of G. Thus, any cluster point \bar{y} of $\{y^k\}$ satisfies $G(\bar{y})=0$. Hence, by the previous argument with y^* replaced by \bar{y} , the sequence $\|y^k-\bar{y}\|$ is also non-increasing and has a limit.

5. We claim that there is only one limiting point of $\{y^k\}$. Suppose \bar{y}_1 and \bar{y}_2 are two cluster points of $\{y^k\}$. Then both sequences $\{\|y^k - \bar{y}_1\|\}$ and $\{\|y^k - \bar{y}_2\|\}$ are non-increasing and have limits. Since \bar{y}_i are limiting points, there exist subsequences $\{k_i^1\}$ and $\{k_i^2\}$ such that $y^{k_i^1} \to \bar{y}_1$ and $y^{k_i^2} \to \bar{y}_2$ as $i \to \infty$. We can choose subsequences again so that we have

$$k_{i-1}^2 < k_i^1 < k_i^2 < k_{i+1}^1$$
 for all i

With this and the non-increasing of $||y^k - \bar{y}_1||$ and $||y^k - \bar{y}_2||$ we get

$$\|y^{k_{i+1}^1} - \bar{y}_1\| \le \|y^{k_i^2} - \bar{y}_1\| \le \|y^{k_i^1} - \bar{y}_1\| \to 0 \text{ as } i \to \infty.$$

On the other hand, $y^{k_i^2} \to \bar{y}_2$. Therefore, we get $\bar{y}_1 = \bar{y}_2$. This shows that there is only one limiting point, say y^* , and $y^k \to y^*$.

2.6 Proximal gradient method

This method is to minimize h(x) := f(x) + g(x).

Assumptions:

- $g \in C^1$ convex, $\nabla g(x)$ Lipschitz continuous with parameter L
- f is closed and convex

Proximal gradient method: This is also known as the Forward-backward method

$$\boxed{x^k = \operatorname{prox}_{tf}(x^{k-1} - t\nabla g(x^{k-1}))}$$

We can express prox_{tf} as $(I+t\partial f)^{-1}$. Therefore the proximal gradient method can be expressed as

$$x^{k} = (I + t\partial f)^{-1}(I - t\nabla g)x^{k-1}$$

Thus, the proximal gradient method is also called the forward-backward method.

Theorem 2.4. The forward-backward method converges provided $Lt \leq 1$.

Proof. 1. Given a point x, define

$$x' = x - t\nabla g(x), \quad x^+ = \operatorname{prox}_{tf}(x').$$

Then

$$-\frac{x'-x}{t} = \nabla g(x), \quad -\frac{x^+-x'}{t} \in \partial f(x^+).$$

Combining these two, we define a "gradient" $G_t(x) := -\frac{x^+ - x}{t}$. Then $G_t(x) - \nabla g(x) \in \partial f(x^+)$.

2. From the quadratic upper bound of g, we have

$$g(x^{+}) \leq g(x) + \langle \nabla g(x), x^{+} - x \rangle + \frac{L}{2} ||x^{+} - x||^{2}$$

$$= g(x) + \langle \nabla g(x), x^{+} - x \rangle + \frac{Lt^{2}}{2} ||G_{t}(x)||^{2}$$

$$\leq g(x) + \langle \nabla g(x), x^{+} - x \rangle + \frac{t}{2} ||G_{t}(x)||^{2},$$

The last inequality holds provided $Lt \leq 1$. Combining this with

$$g(x) \le g(z) + \langle \nabla g(x), x - z \rangle$$

we get

$$g(x^+) \le g(z) + \langle \nabla g(x), x^+ - z \rangle + \frac{t}{2} ||G_t(x)||^2.$$

3. From first-order condition at x^+ of f

$$f(z) \ge f(x^+) + \langle p, z - x^+ \rangle$$
 for all $p \in \partial f(x^+)$.

Choosing $p = G_t(x) - \nabla g(x)$, we get

$$f(x^+) \le f(z) + \langle G_t(x) - \nabla g(x), x^+ - z \rangle.$$

4. Adding the above two inequalities, we get

$$h(x^+) \le h(z) + \langle G_t(x), x^+ - z \rangle + \frac{t}{2} ||G_t(x)||^2$$

Taking z = x, we get

$$h(x^+) \le h(x) - \frac{t}{2} ||G_t(x)||^2.$$

Taking $z = x^*$, we get

$$h(x^{+}) - h(x^{*}) \leq \langle G_{t}(x), x^{+} - x^{*} \rangle + \frac{t}{2} \|G_{t}(x)\|^{2}$$

$$= \frac{1}{2t} (\|x^{+} - x^{*} + tG_{t}(x)\|^{2} - \|x^{+} - x^{*}\|^{2})$$

$$= \frac{1}{2t} (\|x - x^{*}\|^{2} - \|x^{+} - x^{*}\|^{2})$$

2.7 Augmented Lagrangian Method

Problem

$$\min F_P(x) := f(x) + g(Ax)$$

Equivalent to the primal problem with constraint

$$\min f(x) + g(y)$$
 subject to $Ax = y$

Assumptions

• f and g are closed and convex.

Examples:

- $g(y) = \iota_{\{b\}}(y) = \begin{cases} 0 & \text{if } y = b \\ \infty & \text{otherwise} \end{cases}$ The corresponding $g^*(z) = \langle z, b \rangle$.
- $g(y) = \iota_{\mathcal{C}}(y)$
- $q(y) = ||y b||^2$.

The Lagrangian is

$$L(x, y, z) := f(x) + g(y) + \langle z, Ax - y \rangle.$$

The primal function is

$$F_P(x) = \inf_{y} \sup_{z} L(x, y, z).$$

The primal problem is

$$\inf_{x} F_{P}(x) = \inf_{x} \inf_{y} \sup_{z} L(x, y, z).$$

The dual problem is

$$\sup_{z} \inf_{x,y} L(x,y,z) = \sup_{z} \left[\inf_{x} \left(f(x) + \langle z, Ax \rangle \right) + \inf_{y} \left(g(y) - \langle z, y \rangle \right) \right]$$

$$= \sup_{z} \left[-\sup_{x} \left(\langle -A^*z, x \rangle - f(x) \right) - \sup_{y} \left(\langle z, y \rangle - g(y) \right) \right]$$

$$= \sup_{z} \left(-f^*(-A^*z) - g^*(z) \right) = \sup_{z} \left(F_D(z) \right)$$

Thus, the dual function $F_D(z)$ is defined as

$$F_D(z) := \inf_{x,y} L(x,y,z) = -\left(f^*(-A^*z) + g^*(z)\right).$$

and the dual problem is

$$\sup P_D(z).$$

We shall solve this dual problem by proximal point method:

$$z^k = \operatorname{prox}_{tF_D}(z^{k-1}) = \operatorname{argmax}_u \left[-f^*(-A^T u) - g^*(u) - \frac{1}{2t} \|u - z^{k-1}\|^2 \right]$$

We have

$$\sup_{u} \left(-f^*(-A^T u) - g^*(u) - \frac{1}{2t} \|u - z\|^2 \right) \\
= \sup_{u} \left(\inf_{x,y} L(x,y,u) - \frac{1}{2t} \|u - z\|^2 \right) \\
= \sup_{u} \inf_{x,y} \left(f(x) + g(y) + \langle u, Ax - y \rangle - \frac{1}{2t} \|u - z\|^2 \right) \\
= \inf_{x,y} \sup_{u} \left(f(x) + g(y) + \langle u, Ax - y \rangle - \frac{1}{2t} \|u - z\|^2 \right) \\
= \inf_{x,y} \left(f(x) + g(y) + \langle z, Ax - y \rangle + \frac{t}{2} \|Ax - y\|^2 \right).$$

Here, the maximum u = z + t(Ax - y). Thus, we define the augmented Lagrangian to be

$$L_t(x, y, z) := f(x) + g(y) + \langle z, Ax - y \rangle + \frac{t}{2} ||Ax - y||^2$$

The augmented Lagrangian method is

$$(x^k, y^k) = \operatorname{argmin}_{x,y} L_t(x, y, z^{k-1})$$
$$z^k = z^{k-1} + t(Ax^k - y^k)$$

Thus, the Augmented Lagrangian method is equivalent to the proximal point method applied to the dual problem:

$$\sup_{z} \left(-f^*(-A^*z) - g^*(z) \right).$$

2.8 Alternating direction method of multipliers(ADMM)

Problem

$$\min f_1(x_1) + f_2(x_2)$$
 subject to $A_1x_1 + A_2x_2 - b = 0$.

Assumptions

• f_i are closed and convex.

ADMM

Define

$$L_t(x_1, x_2, z) := f_1(x_1) + f_2(x_2) + \langle z, A_1x_1 + A_2x_2 - b \rangle + \frac{t}{2} ||A_1x_1 + A_2x_2 - b||^2.$$

• ADMM:

$$\begin{split} x_1^k &= \mathrm{argmin}_{x_1} L_t(x_1, x_2^{k-1}, z^{k-1}) \\ &= \mathrm{argmin}_{x_1} \left(f_1(x_1) + \frac{t}{2} \| A_1 x_1 + A_2 x_2^{k-1} - b + \frac{1}{t} z^{k-1} \|^2 \right) \\ x_2^k &= \mathrm{argmin}_{x_2} L_t(x_1^k, x_2, z^{k-1}) \\ &= \mathrm{argmin}_{x_2} \left(f_2(x_2) + \frac{t}{2} \| A_1 x_1^k + A_2 x_2 - b + \frac{1}{t} z^{k-1} \|^2 \right) \\ z^k &= z^{k-1} + t (A_1 x_1^k + A_2 x_2^k - b) \end{split}$$

• ADMM is the Douglas-Rachford method applied to the dual problem:

$$\max_{z} \left(-\langle b, z \rangle - f_1^*(-A_1^T z) \right) + \left(-f_2^*(-A_2^T z) \right) := -h_1(z) - h_2(z).$$

• Douglas-Rachford method

$$\min h_1(z) + h_2(z)$$

$$\begin{split} z^k &= \mathrm{prox}_{h_1}(y^{k-1}) \\ y^k &= y^{k-1} + \mathrm{prox}_{h_2}(2z^k - y^{k-1}) - z^k. \end{split}$$

If we call $(I + \partial h_1)^{-1} = A$ and $(I + \partial h_2)^{-1} = B$. These two operators are firmly nonexpansive. The Douglas-Rachford method is to find the fixed point of $y^k = Ty^{k-1}$.

$$T = I + A + B(2A - I).$$

2.9 Primal dual formulation

Consider

$$\inf_{x} \left(f(x) + g(Ax) \right)$$

Let

$$F_P(x) := f(x) + g(Ax)$$

Define y = Ax consider $\inf_{x,y} f(x) + g(y)$ subject to y = Ax. Now, introduce method of Lagrange multiplier: consider

$$L_P(x, y, z) = f(x) + g(y) + \langle z, Ax - y \rangle$$

Then

$$F_P(x) = \inf_{y} \sup_{z} L_P(x, y, z)$$

The problem is

$$\inf_{x} \inf_{y} \sup_{z} L_{P}(x, y, z)$$

The dual problem is

$$\sup_{z} \inf_{x,y} L_{P}(x,y,z)$$

We find that

$$\inf_{x,y} L_P(x,y,z) = -f^*(-A^*z) - g^*(z) := F_D(z)$$

By assuming optimality condition, we have

$$\sup_{z} \inf_{x,y} L_P(x,y,z) = \sup_{z} F_D(z).$$

If we take \inf_y first

$$\inf_{y} L_P(x, y, z) = \inf_{y} \left(f(x) + g(y) + \langle z, Ax - y \rangle \right) = f(x) + \langle z, Ax \rangle - g^*(z) := L_{PD}(x, z).$$

Then the problem is

$$\inf_{x} \sup_{z} L_{PD}(x,z).$$

On the other hand, we can start from $F_D(z) := -f^*(-A^*z) - g^*(z)$. Consider

$$L_D(z, w, x) = -f^*(w) - q^*(z) - \langle x, -A^*z - w \rangle$$

then we have

$$\sup_{w} \inf_{z} L_D(z, w, x) = F_D(z).$$

If instead, we exchange the order of inf and sup,

$$\sup_{z,w} L_D(z,w,x) = \sup_{z,w} \left(-f^*(w) - g^*(z) - \langle x, -A^*z - w \rangle \right) = f(x) + g(Ax) = F_P(x).$$

We can also take \sup_{w} first, then we get

$$\sup_{w} L_{D}(z, w, x) = \sup_{w} \left(-f^{*}(w) - g^{*}(z) - \langle x, -A^{*}z - w \rangle \right) = f(x) - g^{*}(z) + \langle Ax, z \rangle = L_{PD}(x, z).$$

Let us summarize

$$F_{P}(x) = f(x) + g(Ax)$$

$$F_{D}(z) = -f^{*}(-Az) - g^{*}(z)$$

$$L_{P}(x, y, z) := f(x) + g(y) + \langle z, Ax - y \rangle$$

$$L_{D}(z, w, x) := -f^{*}(w) - g^{*}(z) - \langle x, -A^{*}z - w \rangle$$

$$L_{PD}(x, z) := \inf_{y} L_{P}(x, y, z) = \sup_{w} L_{D}(z, w, x) = f(x) - g^{*}(z) + \langle z, Ax \rangle$$

$$F_{P}(x) = \sup_{z} L_{PD}(x, z)$$

$$F_{D}(z) = \inf_{x} L_{PD}(x, z)$$

By assuming optimality condition, we have

$$\inf_{x} \sup_{z} L_{PD}(x,z) = \sup_{z} \inf_{x} L_{P}(x,z).$$