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1.1 Motivations: Convex optimization problems

In applications, we encounter many constrained optimization problems. Examples

• Basis pursuit: exact sparse recovery problem

min ‖x‖1 subject to Ax = b.

or robust recovery problem

min ‖x‖1 subject to ‖Ax− b‖22 ≤ ε.

• Image processing:
min ‖∇x‖1 subject to ‖Ax− b‖22 ≤ ε.

• The constrained can be a convex set C. That is

min
x
f0(x) subject to Ax ∈ C

we can define an indicator function

ιC(x) =

{
0 if x ∈ C
+∞ otherwise .

We can rewrite the constrained minimization problem as a unconstrained minimization problem:

min
x
f0(x) + ιC(Ax).

This can be reformulated as

min
x,y

f0(x) + ιC(y) subject to Ax = y.

• In abstract form, we encounter
min f(x) + g(Ax)

we can express it as
min f(x) + g(y) subject to Ax = y.

• For more applications, see Boyd’s book.

A standard convex optimization problem can be formulated as

min
x∈X

f0(x)

subject to Ax = y

and fi(x) ≤ bi, i = 1, ...,M

Here, fi’s are convex. The space X is a Hilbert space. Here, we just take X = RN .
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1.2 Convex functions

Goal: We want to extend theory of smooth convex analysis to non-differentiable convex functions.
Let X be a separable Hilbert space, f : X → (−∞,+∞] be a function.

• Proper: f is called proper if f(x) < ∞ for at least one x. The domain of f is defined to be:
domf = {x|f(x) <∞}.

• Lower Semi-continuity: f is called lower semi-continuous if lim infxn→x̄f(xn) ≥ f(x̄).

– The set epif := {(x, η)|f(x) ≤ η} is called the epigraph of f .

– Prop: f is l.s.c. if and only if epif is closed. Sometimes, we call such f closed. (https://
proofwiki.org/wiki/Characterization_of_Lower_Semicontinuity)

– The indicator function ιC of a set C is closed if and only if C is closed.

• Convex function

– f is called convex if domf is convex and Jensen’s inequality holds:
f((1− θ)x+ θy) ≤ (1− θ)f(x) + θf(y) for all 0 ≤ θ ≤ 1 and any x, y ∈ X .

– Proposition: f is convex if and only if epif is convex.

– First-order condition: for f ∈ C1, epif being convex is equivalent to
f(y) ≥ f(x) + 〈∇f(x), y − x〉 for all x, y ∈ X .

– Second-order condition: for f ∈ C2, Jensen’s inequality is equivalent to∇2f(x) � 0.

– If fα is a family of convex function, then supα fα is again a convex function.

• Strictly convex:

– f is called strictly convex if the strict Jensen inequality holds: for x 6= y and t ∈ (0, 1),

f((1− t)x+ ty) < (1− t)f(x) + tf(y).

– First-order condition: for f ∈ C1, the strict Jensen inequality is equivalent to
f(y) > f(x) + 〈∇f(x), y − x〉 for all x, y ∈ X .

– Second-order condition: for f ∈ C2, (∇2f(x) � 0) =⇒ strict Jensen’s inequality is equiva-
lent to .

Proposition 1.1. A convex function f : RN → R is continuous.

Proposition 1.2. Let f : RN → (−∞,∞] be convex. Then

1. a local minimizer of f is also a global minimizer;

2. the set of minimizers is convex;

3. if f is strictly convex, then the minimizer is unique.
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1.3 Gradients of convex functions

Proposition 1.3 (Monotonicity of ∇f(x)). Suppose f ∈ C1. Then f is convex if and only if domf is
convex and∇f(x) is a monotone operator:

〈∇f(x)−∇f(y), x− y〉 ≥ 0.

Proof. 1. (⇒) From convexity

f(y) ≥ f(x) + 〈∇f(x), y − x〉, f(x) ≥ f(y) + 〈∇f(y), x− y〉.

Add these two, we get monotonicity of∇f(x).

2. (⇐) Let g(t) = f(x+t(y−x)). Then g′(t) = 〈∇f(x+t(y−x)), y−x〉 ≥ g′(0) by monotonicity.
Hence

f(y) = g(1) = g(0) +

∫ 1

0
g′(t) dt ≥ g(0) +

∫ 1

0
g′(0) dt = f(x) + 〈∇f(x), y − x〉

Proposition 1.4. Suppose f is convex and in C1. The following statements are equivalent.

(a) Lipschitz continuity of∇f(x): there exists an L > 0 such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for all x, y ∈ domf.

(b) g(x) := L
2 ‖x‖

2 − f(x) is convex.

(c) Quadratic upper bound

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2.

(d) Co-coercivity

〈∇f(x)−∇f(y), x− y〉 ≥ 1

L
‖∇f(x)−∇f(y)‖2.

Proof. 1. (a)⇒ (b):

|〈∇f(x)−∇f(y), x− y〉| ≤ ‖∇f(x)−∇f(y)‖‖x− y‖ ≤ L‖x− y‖2

⇔ 〈∇g(x)−∇g(y), x− y〉 = 〈L(x− y)− (∇f(x)−∇f(y)), x− y〉 ≥ 0

Therefore,∇g(x) is monotonic and thus g is convex.

2. (b)⇔ (c): g is convex⇔

g(y) ≥ g(x) + 〈∇g(x), y − x〉

⇔ L

2
‖y‖2 − f(y) ≥ L

2
‖x‖2 − f(x) + 〈Lx−∇f(x), y − x〉

⇔ f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖x− y‖2.
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3. (b) ⇒ (d): Define fx(z) = f(z) − 〈∇f(x), z〉, fy(z) = f(z) − 〈∇f(y), z〉. From (b), both
(L/2)‖z‖2 − fx(z) and (L/2)‖z‖2 − fy(z) are convex, and z = x minimizes fx. Thus from the
proposition below

f(y)− f(x)− 〈∇f(x), y − x〉 = fx(y)− fx(x) ≥ 1

2L
‖∇fx(y)‖2 =

1

2L
‖∇f(y)−∇f(x)‖2.

Similarly, z = y minimizes fy(z), we get

f(x)− f(y)− 〈∇f(y), x− y〉 ≥ 1

2L
‖∇f(y)−∇f(x)‖2.

Adding these two together, we get the co-coercivity.

4. (d)⇒ (a): by Cauchy inequality.

Proposition 1.5. Suppose f is convex and in C1 with∇f(x) being Lipschitz continuous with parameter
L. Suppose x∗ is a global minimum of f . Then

1

2L
‖∇f(x)‖2 ≤ f(x)− f(x∗) ≤ L

2
‖x− x∗‖2.

Proof. 1. Right-hand inequality follows from quadratic upper bound.

2. Left-hand inequality follows by minimizing quadratic upper bound

f(x∗) = inf
y
f(y) ≤ inf

y

(
f(x) + 〈∇f(x), y − x〉+

L

2
‖y − x‖2

)
= f(x)− 1

2L
‖∇f(x)‖2.

1.4 Strong convexity

f is called strongly convex if domf is convex and the strong Jensen inequality holds: there exists a
constant m > 0 such that for any x, y ∈ domf and t ∈ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− m

2
t(1− t)‖x− y‖2.

This definition is equivalent to the convexity of g(x) := f(x)− m
2 ‖x‖

2. This comes from the calculation

(1− t)‖x‖2 + t‖y‖2 − ‖(1− t)x+ ty‖2 = t(1− t)‖x− y‖2.

Whenf ∈ C2, then strong convexity of f is equivalent to

∇2f(x) � mI for any x ∈ domf.

Proposition 1.6. Suppose f ∈ C1. The following statements are equivalent:

(a) f is strongly convex, i.e. g(x) = f(x)− m
2 ‖x‖

2 is convex,

(b) for any x, y ∈ domf , 〈∇f(x)−∇f(y), x− y〉 ≥ m‖x− y‖2.

(c) (quadratic lower bound):

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
m

2
‖x− y‖2.
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Proposition 1.7. If f is strongly convex, then f has a unique global minimizer x∗ which satisfies

m

2
‖x− x∗‖2 ≤ f(x)− f(x∗) ≤ 1

2m
‖∇f(x)‖2 for all x ∈ domf.

Proof. 1. For lelf-hand inequality, we apply quadratic lower bound

f(x) ≥ f(x∗) + 〈∇f(x∗), x− x∗〉+
m

2
‖x− x∗‖2 =

m

2
‖x− x∗‖2.

2. For right-hand inequality, quadratic lower bound gives

f(x∗) = inf
y
f(y) ≥ inf

y

(
f(x) + 〈∇f(x), y − x〉+

m

2
‖y − x‖2

)
≥ f(x)− 1

2m
‖∇f(x)‖2

We take infimum in y then get the left-hand inequality.

Proposition 1.8. Suppose f is both strongly convex with parameterm and∇f(x) is Lipschitz continuous
with parameter L. Then f satisfies stronger co-coercivity condition

〈∇f(x)−∇f(y), x− y〉 ≥ mL

m+ L
‖x− y‖2 +

1

m+ L
‖∇f(x)−∇f(y)‖2.

Proof. 1. Consider g(x) = f(x)− m
2 ‖x‖

2. From strong convexity of f , we get g(x) is convex.

2. From Lipschitz of f , we get g is also Lipschitz continuous with parameter L−m.

3. We apply co-coercivity to g(x):

〈∇g(x)−∇g(y), x− y〉 ≥ 1

L−m
‖∇g(x)−∇g(y)‖2

〈∇f(x)−∇f(y)−m(x− y), x− y〉 ≥ 1

L−m
‖∇f(x)−∇f(y)−m(x− y)‖2(

1 +
2m

L−m

)
〈∇f(x)−∇f(y), x−y〉 ≥ 1

L−m
‖∇f(x)−∇f(y)‖2+

(
m2

L−m
+m

)
‖x−y‖2.

1.5 Subdifferential

Let f be convex. The subdifferential of f at a point x is a set defined by

∂f(x) = {u ∈ X|(∀y ∈ X) f(x) + 〈u, y − x〉 ≤ f(y)}

∂f(x) is also called subgradients of f at x.

Proposition 1. (a) If f is convex and differentiable at x, then ∂f(x) = {∇f(x)}.

(b) If f is convex, then ∂f(x) is a closed convex set.

• Let f(x) = |x|. Then ∂f(0) = [−1, 1].

• Let C be a closed convex set on RN . Then ∂C is locally rectifiable. Moreover,

∂ιC(x) = {λn | λ ≥ 0, n is the unit outer normal of ∂C at x}.
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Proposition 1.9. Let f : Rn → (−∞,∞] be convex and closed. Then x∗ is a minimum of f if and only
if 0 ∈ ∂f(x∗).

Proposition 1.10. The subdifferential of a convex function f is a set-valued monotone operator. That is,
if u ∈ ∂f(x), v ∈ ∂f(y), then 〈u− v, x− y〉 ≥ 0.

Proof. From
f(y) ≥ f(x) + 〈u, y − x〉, f(x) ≥ f(y) + 〈v, x− y〉,

Combining these two inequality, we get monotonicity.

Proposition 1.11. The following statements are equivalent.

(1) f is strongly convex (i.e. f − m
2 ‖x‖

2 is convex);

(2) (quadratic lower bound)

f(y) ≥ f(x) + 〈u, y − x〉+
m

2
‖x− y‖2 for any x, y

where u ∈ ∂f(x);

(3) (Strong monotonicity of ∂f ):

〈u− v, x− y〉 ≥ m‖x− y‖2, for any x, y with any u ∈ ∂f(x), v ∈ ∂f(y).

1.6 Proximal operator

Definition 1.1. Given a convex function f , the proximal mapping of f is defined as

proxf (x) := argminu

(
f(u) +

1

2
‖u− x‖2

)
.

Since f(u) + 1/2‖u − x‖2 is strongly convex in u, we get unique minimum. Thus, proxf (x) is well-
defined.

Examples

• Let C be a convex set. Define indicator function ιC(x) as

ιC(x) =

{
0 if x ∈ C
∞ otherwise .

Then proxιC(x) is the projection of x onto C.

PCx ∈ C and (∀z ∈ C), 〈z − PC(x), x− PC(x)〉 ≤ 0.

• f(x) = ‖x‖1: proxf is the soft-thresholding:

proxf (x)i =


xi − 1 if xi ≥ 1
0 if |xi| ≤ 1
xi + 1 if xi ≤ −1
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Properties

• Let f be convex. Then

z = proxf (x) = argminu

(
f(u) +

1

2
‖u− x‖2

)
if and only if

0 ∈ ∂f(z) + z − x

or
x ∈ z + ∂f(z).

Sometimes, we express this as

proxf (x) = z = (I + ∂f)−1(x).

• Co-coercivity:
〈proxf (x), proxf (y), x− y〉 ≥ ‖proxf (x)− proxf (y)‖2.

Let x+ = proxf (x) := argminzf(z) + 1
2‖z − x‖2. We have x − x+ ∈ ∂f(x+). Similarly,

y+ := proxf (y) satisfies y − y+ ∈ ∂f(y+). From monotonicity of ∂f , we get

〈u− v, x+ − y+〉 ≥ 0

for any u ∈ ∂f(x+), v ∈ ∂f(y+). Taking u = x− x+ and v = y − y+, we obtain co-coercivity.

• The co-coercivity of proxf implies that proxf is Lipschitz continuous.

‖proxf (x)− proxf (y)‖2 ≤ |〈x− y, proxf (x)− proxf (y)〉|

implies
‖proxf (x)− proxf (y)‖ ≤ ‖x− y‖.

1.7 Conjugate of a convex function

• For a function f : RN → (−∞,∞], we define its conjugate f∗ by

f∗(y) = sup
x

(〈x, y〉 − f(x)) .

Examples

1. f(x) = 〈a, x〉 − b, f∗(y) = supx(〈y, x〉 − 〈a, x〉+ b) =

{
b if y = a
∞ otherwise.

2. f(x) =

{
ax if x < 0
bx if x > 0.

, a < 0 < b.

f∗(y) =

{
0 if a < y < b
∞ otherwise.
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3. f(x) = 1
2〈x,Ax〉+ 〈b, x〉+ c, where A is symmteric and non-singular, then

f∗(y) =
1

2
〈y − b, A−1(y − b)〉 − c.

In general, if A � 0, then

f∗(y) =
1

2
〈y − b, A†(y − b)〉 − c, A† := (A∗A)−1A∗

and dom f∗ = range A+ b.

4. f(x) = 1
p‖x‖

p, p ≥ 1, then f∗(u) = 1
p∗ ‖u‖

p∗ , where 1/p+ 1/p∗ = 1.

5. f(x) = ex,

f∗(y) = sup
x

(xy − ex) =


y ln y − y if y > 0
0 if y = 0
∞ if y < 0

6. C = {x|〈Ax, x〉 ≤ 1}, where A is s symmetric positive definite matrix. ι∗C =
√
〈A−1u, u〉.

Properties

• f∗ is convex and l.s.c.
Note that f∗ is the supremum of linear functions. We have seen that supremum of a family of
closed functions is closed; and supremum of a family of convex functions is also convex.

• Fenchel’s inequality:
f(x) + f∗(y) ≥ 〈x, y〉.

This follows directly from the definition of f∗:

f∗(y) = sup
x

(〈x, y〉 − f(x)) ≥ 〈x, y〉 − f(x).

This can be viewed as an extension of the Cauchy inequality

1

2
‖x‖2 +

1

2
‖y‖2 ≥ 〈x, y〉.

Proposition 1.12. (1) f∗∗(x) is closed and convex.

(2) f∗∗(x) ≤ f(x).

(3) f∗∗(x) = f(x) if and only if f is closed and convex.

Proof. 1. From Fenchel’s inequality

〈x, y〉 − f∗(y) ≤ f(x).

Taking sup in y gives f∗∗(x) ≤ f(x).

2. f∗∗(x) = f(x) if and only if epif∗∗ = epif . We have seen f∗∗ ≤ f . This leads to eps f ⊂
eps f∗∗. Suppose f is closed and convex and suppose (x, f∗∗(x)) 6∈ epif . That is f∗∗(x) < f(x)
and there is a strict separating hyperplane: {(z, s) : a(z − x) + b(s− f∗∗(x) = 0} such that〈(

a
b

)
,

(
z − x

s− f∗∗(x)

)〉
≤ c < 0 for all (z, s) ∈ epif

with b ≤ 0.
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3. If b < 0, we may normalize it such that (a, b) = (y,−1). Then we have

〈y, z〉 − s− 〈y, x〉+ f∗∗(x) ≤ c < 0.

Taking supremum over (z, s) ∈ epif ,

sup
(z,s)∈epif

(〈y, z〉 − s) ≤ sup
z

(〈y, z〉 − f(z)) = f∗(y).

Thus, we get
f∗(y)− 〈y, x〉+ f∗∗(x) ≤ c < 0.

This contradicts to Fenchel’s inequality.

4. If b = 0, choose ŷ ∈ dom f∗ and add ε(ŷ,−1) to (a, b), we can get〈(
a+ εŷ
−ε

)
,

(
z − x

s− f∗∗(x)

)〉
≤ c1 < 0

Now, we apply the argument for b < 0 and get contradiction.

5. If f∗∗ = f , then f is closed and convex because f∗∗ is closed and convex no matter what f is.

Proposition 1.13. If f is closed and convex, then

y ∈ ∂f(x)⇔ x ∈ ∂f∗(y)⇔ 〈x, y〉 = f(x) + f∗(y).

Proof. 1.

y ∈ ∂f(x)⇔ f(z) ≥ f(x) + 〈y, z − x〉
⇔ 〈y, x〉 − f(x) ≥ 〈y, z〉 − f(z) for all z

⇔ 〈y, x〉 − f(x) = sup
z

(〈y, z〉 − f(z))

⇔ 〈y, x〉 − f(x) = f∗(y)

2. For the equivalence of x ∈ ∂f∗(x)⇔ 〈x, y〉 = f(x) + f∗(y), we use f∗∗(x) = f(x) and apply
the previous argument.

1.8 Method of Lagrange multiplier for constrained optimization problems

A standard convex optimization problem can be formulated as

inf
x
f0(x)

subject to fi(x) ≤ 0, i = 1, ...,m

and hi(x) = 0 i = 1, ..., p.

We assume the domain
D :=

⋂
i

domfi ∩
⋂
i

domhi

is a closed convex set in Rn. A point x ∈ D satisfying the constraints is called a feasible point. We
assume D 6= ∅ and denote p∗ the optimal value.
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The method of Lagrange multiplier is to introduce augmented variables λ, µ and a Lagrangian so
that the problem is transformed to a unconstrained optimization problem. Let us define the Lagrangian
to be

L(x, λ, µ) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

µihi(x).

Here, λ and µ are the augmented variables, called the Lagrange multipliers or the dual variables.

Primal problem From this Lagrangian, we notice that

sup
λ�0

(
m∑
i=1

λifi(x)

)
= ιCf (x), Cf =

⋂
i

{x|fi(x) ≤ 0}

and

sup
µ

(
p∑
i=1

µihi(x)

)
= ιCh(x), Ch =

⋂
i

{x|hi(x) = 0}.

Hence
sup
λ�0,µ

L(x, λ, µ) = f0(x) + ιCf (x) + ιCh(x)

Thus, the original optimization problem can be written as

p∗ = inf
x∈D

(
f0(x) + ιCf (x) + ιCh(x)

)
= inf

x∈D
sup
λ�0,µ

L(x, λ, µ).

This problem is called the primal problem.

Dual problem From this Lagrangian, we define the dual function

g(λ, µ) := inf
x∈D

L(x, λ, µ).

This is an infimum of a family of concave closed functions in λ and µ, thus g(λ, µ) is a concave closed
function. The dual problem is

d∗ = sup
λ�0,µ

g(λ, µ).

This dual problem is the same as

sup
λ,µ

g(λ, µ) subject to λ � 0.

We refer (λ, µ) ∈ dom g with λ � 0 as dual feasible variables. The primal problem and dual problem
are connected by the following duality property.

Weak Duality Property

Proposition 2. For any λ � 0 and any µ, we have that

g(λ, µ) ≤ p∗.

In other words,
d∗ ≤ p∗
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Proof. Suppose x is feasible point (i.e. x ∈ D, or equivalently, fi(x) ≤ 0 and hi(x) = 0). Then for any
λi ≥ 0 and any µi, we have

m∑
i=1

λifi(x) +

p∑
i=1

µihi(x) ≤ 0.

This leads to

L(x, λ, µ) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

µihi(x) ≤ f0(x).

Hence
g(λ, µ) := inf

x∈D
L(x, λ, µ) ≤ f0(x), for all x ∈ D.

Hence
g(λ, µ) ≤ p∗

for all feasible pair (λ, µ)

This is called weak duality property. Thus, the weak duality can also be read as

sup
λ�0,µ

inf
x∈D

L(x, λ, µ) ≤ inf
x∈D

sup
λ�0,µ

L(x, λ, µ).

Definition 1.2. (a) A point x∗ is called a primal optimal if it minimizes supλ�0,µ L(x, λ, µ).

(b) A dual pair (λ∗, µ∗) with λ∗ � 0 is said to be a dual optimal if it maximizes infx∈D L(x, λ, µ).

Strong duality

Definition 1.3. When d∗ = p∗, we say the strong duality holds.

A sufficient condition for strong duality is the Slater condition: there exists a feasible x in relative
interior of domD: fi(x) < 0, i = 1, ...,m and hi(x) = 0, i = 1, ..., p. Such a point x is called a strictly
feasible point.

Theorem 1.1. Suppose f0, ..., fm are convex, h(x) = Ax − b, and assume the Slater condition holds:
there exists x ∈ D◦ with Ax− b = 0 and fi(x) < 0 for all i = 1, ...,m. Then the strong duality

sup
λ�0,µ

inf
x∈D

L(x, λ, µ) = inf
x∈D

sup
λ�0,µ

L(x, λ, µ).

holds.

Proof. See pp. 234-236, Boyd’s Convex Optimization.

Complementary slackness Suppose there exist x∗, λ∗ � 0 and µ∗ such that x∗ is the optimal primal
point and (λ∗, µ∗) is the optimal dual point and the strong duality gap p∗ − d∗ = 0. In this case,

f0(x∗) = g(λ∗, µ∗)

:= inf
x

(
f0(x) +

m∑
i=1

λ∗i fi(x) +

p∑
i=1

µ∗ihi(x)

)

≤ f0(x∗) +
m∑
i=1

λ∗i fi(x
∗) +

p∑
i=1

µ∗ihi(x
∗)

≤ f0(x∗).
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The last line follows from
m∑
i=1

λifi(x) +

p∑
i=1

µihi(x) ≤ 0.

for any feasible pair (x, λ, µ). This leads to

m∑
i=1

λ∗i fi(x
∗) +

p∑
i=1

µ∗ihi(x
∗) = 0.

Since hi(x∗) = 0 for i = 1, ..., p, λi ≥ 0 and fi(x∗) ≤ 0, we then get

λ∗i fi(x
∗) = 0 for all i = 1, ...,m.

This is called complementary slackness. It holds for any optimal solutions (x∗, λ∗, µ∗).

KKT condition

Proposition 1.14. When f0, fi and hi are differentiable, then the optimal points x∗ to the primal problem
and (λ∗, µ∗) to the dual problem satisfy the Karush-Kuhn-Tucker (KKT) condition:

fi(x
∗) ≤ 0, i = 1, ...,m

λ∗i ≥ 0, i = 1, ...,m,

λ∗i fi(x
∗) = 0, i = 1, ...,m

hi(x
∗) = 0, i = 1, ..., p

∇f0(x∗) +
m∑
i=1

λ∗i∇fi(x∗) +

p∑
i=1

µ∗i∇gi(x∗) = 0.

Remark. If f0, fi, i = 0, ...,m are closed and convex, but may not be differentiable, then the last KKT
condition is replaced by

0 ∈ ∂f0(x∗) +
m∑
i=1

λ∗i ∂fi(x
∗) +

p∑
i=1

µ∗i ∂gi(x
∗).

We call the triple (x∗, λ∗, µ∗) satisfies the optimality condition.

Theorem 1.2. If f0, fi are closed and convex and h are affine. Then the KKT condition is also a sufficient
condition for optimal solutions. That is, if (x̂, λ̂, µ̂) satisfies KKT condition, then x̂ is primal optimal and
(λ̂, µ̂) is dual optimal, and there is zero duality gap.

Proof. 1. From fi(x̂) ≤ 0 and h(x̂) = 0, we get that x̂ is feasible.

2. From λ̂i ≥ 0 and fi being convex and hi are linear, we get

L(x, λ̂, µ̂) = f0(x) +
∑
i

λ̂ifi(x) +
∑
i

µ̂ihi(x)

is also convex in x.
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3. The last KKT condition states that x̂ minimizes L(x, λ̂, µ̂). Thus

g(λ̂, µ̂) = L(x̂, λ̂, µ̂)

= f0(x̂) +
m∑
i=1

λ̂ifi(x̂) +

p∑
i=1

µ̂ihi(x̂)

= f0(x̂)

This shows that x̂ and (λ̂, µ̂) have zero duality gap and therefore are primal optimal and dual
optimal, respectively.

2 Optimization algorithms

2.1 Gradient Methods

Assumptions

• f ∈ C1(RN ) and convex

• ∇f(x) is Lipschitz continuous with parameter L

• Optimal value f∗ = infx f(x) is finite and attained at x∗.

Gradient method

• Forward method
xk = xk−1 − tk∇f(xk−1)

– Fixed step size: if tk is constant

– Backtracking line search: Choose 0 < β < 1, initialize tk = 1; take tk := βtk until

f(x− tk∇f(x)) < f(x)− 1

2
tk‖∇f(x)‖2

– Optimal line search:
tk = argmintf(x− t∇f(x)).

• Backward method
xk = xk−1 − tk∇f(xk).

Analysis for the fixed step size case

Proposition 2.15. Suppose f ∈ C1, convex and ∇f is Lipschitz with constant L. If the step size t
satisfies t ≤ 1/L, then the fixed-step size gradient descent method satisfies

f(xk)− f(x∗) ≤ 1

2kt
‖x0 − x∗‖2

13



Remarks

• The sequence {xk} is bounded. Thus, it has convergent subsequence to some x̃which is an optimal
solution.

• If in addition f is strongly convex, then the sequence {xk} converges to the unique optimal solution
x∗ linearly.

Proof.

1. Let x+ := x− t∇f(x).

2. From quadratic upper bound:

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2

choose y = x+ and t < 1/L, we get

f(x+) ≤ f(x) +

(
−t+

Lt2

2

)
‖∇f(x)‖2 ≤ f(x)− t

2
‖∇f(x)‖2.

3. From
f(x∗) ≥ f(x) + 〈∇f(x), x∗ − x〉

we get

f(x+) ≤ f(x)− t

2
‖∇f(x)‖2

≤ f∗ + 〈∇f(x), x− x∗〉 − t

2
‖∇f(x)‖2

= f∗ +
1

2t

(
‖x− x∗‖2 − ‖x− x∗ − t∇f(x)‖2

)
= f∗ +

1

2t

(
‖x− x∗‖2 − ‖x+ − x∗‖2

)
.

4. Define xi−1 = x, xi = x+, sum this inequalities from i = 1, ..., k, we get

k∑
i=1

(
f(xi)− f∗

)
≤ 1

2t

k∑
i=1

(
‖xi−1 − x∗‖2 − ‖xi − x∗‖2

)
=

1

2t

(
‖x0 − x∗‖2 − ‖xk − x∗‖2

)
≤ 1

2t
‖x0 − x∗‖2

5. Since f(xi)− f∗ is a decreasing sequence, we then get

f(xk)− f∗ ≤ 1

k

k∑
i=1

(
f(xi)− f∗

)
≤ 1

2kt
‖x0 − x∗‖2.

Proposition 2.16. Suppose f ∈ C1 and convex. The fixed-step size backward gradient method satisfies

f(xk)− f(x∗) ≤ 1

2kt
‖x0 − x∗‖2.

Here, no assumption on Lipschitz continuity of∇f(x) is needed.
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Proof.

1. Define x+ = x− t∇f(x+).

2. For any z, we have

f(z) ≥ f(x+) + 〈∇f(x+), z − x+〉 = f(x+) + 〈∇f(x+), z − x〉+ t‖∇f(x+)‖2.

3. Take z = x, we get
f(x+) ≤ f(x)− t‖∇f(x+)‖2

Thus, f(x+) < f(x) unless ∇f(x+) = 0.

4. Take z = x∗, we obtain

f(x+) ≤ f(x∗) + 〈∇f(x+), x− x∗〉 − t‖∇f(x+)‖2

≤ f(x∗) + 〈∇f(x+), x− x∗〉 − t

2
‖∇f(x+)‖2

= f(x∗)− 1

2t
‖x− x∗ − t∇f(x+)‖2 +

1

2t
‖x− x∗‖2

= f(x∗) +
1

2t

(
‖x− x∗‖2 − ‖x+ − x∗‖2

)
.

Proposition 2.17. Suppose f is strongly convex with parameter m and ∇f(x) is Lipschitz continuous
with parameter L. Suppose the minimum of f is attended at x∗. Then the gradient method converges
linearly, namely

‖xk − x∗‖2 ≤ ck‖x0 − x∗‖2

f(xk)− f(x∗) ≤ ckL

2
‖x0 − x∗‖2,

where
c = 1− t 2mL

m+ L
< 1 if the step size t ≤ 2

m+ L
.

Proof. 1. For 0 < t ≤ 2/(m+ L):

‖x+ − x∗‖2 = ‖x− t∇f(x)− x∗‖2

= ‖x− x∗‖2 − 2t〈∇f(x), x− x∗〉+ t2‖∇f(x)‖2

≤
(

1− t 2mL

m+ L

)
‖x− x∗‖2 + t

(
t− 2

m+ L

)
‖∇f(x)‖2

≤
(

1− t 2mL

m+ L

)
‖x− x∗‖2 = c‖x− x∗‖2.

t is chosen so that c < 1. Thus, the sequence xk − x∗ converges linearly with rate c.

2. From quadratic upper bound

f(xk)− f(x∗) ≤ L

2
‖xk − x∗‖2 ≤ ckL

2
‖x0 − x∗‖2.

we get f(xk)− f(x∗) also converges to 0 with linear rate.
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2.2 Subgradient method

Assumptions

• f is closed and convex

• Optimal value f∗ = infx f(x) is finite and attained at x∗.

Subgradient method
xk = xk−1 − tkvk−1, vk−1 ∈ ∂f(xk−1).

tk is chosen so that f(xk) < f(xk−1).

• This is a forward (sub)gradient method.

• It may not converge.

• If it converges, the optimal rate is

f(xk)− f(x∗) ≤ O(1/
√
k),

which is very slow.

2.3 Proximal point method

Assumptions

• f is closed and convex

• Optimal value f∗ = infx f(x) is finite and attained at x∗.

Proximal point method:

xk = proxtf (xk−1) = xk−1 − tGt(xk−1)

Let x+ := proxtf (x) := x− tGt(x). From

proxtf (x) := argminz

(
tf(z) +

1

2
‖z − x‖2

)
we get

Gt(x) ∈ ∂f(x+).

Thus, we may view proximal point method is a backward subgradient method.

Proposition 2.18. Suppose f is closed and convex and suppose an ptimal solution x∗ of min f is attain-
able. Then the proximal point method xk = proxtf (xk−1) with t > 0 satisfies

f(xk)− f(x∗) ≤ 1

2kt
‖x0 − x∗‖.
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Convergence proof:

1. Given x, let x+ := proxtf (x). Let Gt(x) := (x+ − x)/t. Then Gt(x) ∈ ∂f(x+). We then have,
for any z,

f(z) ≥ f(x+) + 〈Gt(x), z − x+〉 = 〈Gt(x), z − x〉+ t‖Gt(x)‖2.

2. Take z = x, we get
f(x+) ≤ f(x)− t‖∇f(x+)‖2

Thus, f(x+) < f(x) unless ∇f(x+) = 0.

3. Take z = x∗, we obtain

f(x+) ≤ f(x∗) + 〈Gt(x), x− x∗〉 − t‖Gt(x)‖2

≤ f(x∗) + 〈Gt(x), x− x∗〉 − t

2
‖Gt(x)‖2

= f(x∗) +
1

2t
‖x− x∗ − tGt(x)‖2 − 1

2t
‖x− x∗‖2

= f(x∗) +
1

2t

(
‖x+ − x∗‖2 − ‖x− x∗‖2

)
.

4. Taking x = xi−1, x+ = xi, sum over i = 1, ..., k, we get

k∑
i=1

(f(xk)− f(x∗)) ≤ 1

2t

(
‖x0 − x∗‖ − ‖xk − x∗‖

)
.

Since f(xk) is non-increasing, we get

k(f(xk)− f(x∗)) ≤
k∑
i=1

(f(xk)− f(x∗)) ≤ 1

2t
‖x0 − x∗‖.

2.4 Accelerated Proximal point method

The proximal point method is a first order method. With a small modification, it can be accelerated to a
second order method. This is the work of Nesterov in 1980s.

2.5 Fixed point method

• The proximal point method can be viewed as a fixed point of the proximal map:

F (x) := proxf (x).

• Let
G(x) = x− x+ = (I − F )(x).

• Both F and G are firmly non-expansive, i.e.

〈F (x)− F (y), x− y〉 ≥ ‖F (x)− F (y)‖2

〈G(x)−G(y), x− y〉 ≥ ‖G(x)−G(y)‖2

17



Proof.
(1). x+ = proxf (x) = F (x), y+ = proxf (y) = F (y). G(x) = x − x+ ∈ ∂f(x+). From
monotonicity of ∂f , we have

〈G(x)−G(y), x+ − y+〉 ≥ 0.

This gives
〈x+ − y+, x− y〉 ≥ ‖x+ − y+‖2.

That is
〈F (x)− F (y), x− y〉 ≥ ‖F (x)− F (y)‖2.

(2). From G = I − F , we have

〈G(x)−G(y), x− y〉 = 〈G(x)−G(y), (F +G)(x)− (F +G)(y)〉
= ‖G(x)−G(y)‖2 + 〈G(x)−G(y), F (x)− F (y)〉
= ‖G(x)−G(y)‖2 + 〈x− F (x)− y + F (y), F (x)− F (y)〉
= ‖G(x)−G(y)‖2 + 〈x− y, F (x)− F (y)〉 − ‖F (x)− F (y)‖2

≥ ‖G(x)−G(y)‖2

Theorem 2.3. Assume F is firmly non-expansive. Let

yk = (1− tk)yk−1 + tkF (yk−1), y0 arbitrary.

Suppose a fixed point y∗ of F exists and

tk ∈ [tmin, tmax], 0 < tmin ≤ tmax < 2.

Then yk converges to a fixed point of F .

Proof. 1. Let us define G = (I − F ). We have seen that G is also firmly non-expansive.

yk = yk−1 − tkG(yk−1).

2. Suppose y∗ is a fixed point of F , or equivalently, G(y∗) = 0. From firmly nonexpansive property
of F and G, we get (with y = yk−1, y+ = yk, t = tk)

‖y+ − y∗‖2 − ‖y − y∗‖2 = ‖y+ − y + y − y∗‖2 − ‖y − y∗‖2

= 2〈y+ − y, y − y∗〉+ ‖y+ − y‖2

= 2〈−tG(y), y − y∗〉+ t2‖G(y)‖2

= 2〈−t(G(y)−G(y∗)), y − y∗〉+ t2‖G(y)‖2

≥ −2t‖G(y)−G(y∗)‖2 + t2‖G(y)‖2

= −t(2− t)‖G(y)‖2

≤ −M‖G(y)‖2 ≤ 0.

where M = tmin(2− tmax).

3. Let us sum this inequality over k:

M

∞∑
`=0

‖G(y`)‖2 ≤ ‖y0 − y∗‖2

This implies
‖G(yk)‖ → 0 as k →∞,

and ‖yk − y∗‖ is non-increasing; hence yk is bounded; and ‖yk − y∗‖ → C as k →∞.
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4. Since the sequence {yk} is bounded, any convergent subsequence, say ȳk, converges to ȳ satisfying

G(ȳ) = lim
k→∞

G(ȳk) = 0,

by the continuity of G. Thus, any cluster point ȳ of {yk} satisfies G(ȳ) = 0. Hence, by the
previous argument with y∗ replaced by ȳ, the sequence ‖yk − ȳ‖ is also non-increasing and has a
limit.

5. We claim that there is only one limiting point of {yk}. Suppose ȳ1 and ȳ2 are two cluster points of
{yk}. Then both sequences {‖yk−ȳ1‖} and {‖yk−ȳ2‖} are non-increasing and have limits. Since
ȳi are limiting points, there exist subsequences {k1

i } and {k2
i } such that yk

1
i → ȳ1 and yk

2
i → ȳ2

as i→∞. We can choose subsequences again so that we have

k2
i−1 < k1

i < k2
i < k1

i+1 for all i

With this and the non-increasing of ‖yk − ȳ1‖ and ‖yk − ȳ2‖ we get

‖yk1i+1 − ȳ1‖ ≤ ‖yk
2
i − ȳ1‖ ≤ ‖yk

1
i − ȳ1‖ → 0 as i→∞.

On the other hand, yk
2
i → ȳ2. Therefore, we get ȳ1 = ȳ2. This shows that there is only one

limiting point, say y∗, and yk → y∗.

2.6 Proximal gradient method

This method is to minimize h(x) := f(x) + g(x).

Assumptions:

• g ∈ C1 convex, ∇g(x) Lipschitz continuous with parameter L

• f is closed and convex

Proximal gradient method: This is also known as the Forward-backward method

xk = proxtf (xk−1 − t∇g(xk−1))

We can express proxtf as (I + t∂f)−1. Therefore the proximal gradient method can be expressed as

xk = (I + t∂f)−1(I − t∇g)xk−1

Thus, the proximal gradient method is also called the forward-backward method.

Theorem 2.4. The forward-backward method converges provided Lt ≤ 1.

Proof. 1. Given a point x, define

x′ = x− t∇g(x), x+ = proxtf (x′).

Then

−x
′ − x
t

= ∇g(x), −x
+ − x′

t
∈ ∂f(x+).

Combining these two, we define a “gradient” Gt(x) := −x+−x
t . Then Gt(x)−∇g(x) ∈ ∂f(x+).
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2. From the quadratic upper bound of g, we have

g(x+) ≤ g(x) + 〈∇g(x), x+ − x〉+
L

2
‖x+ − x‖2

= g(x) + 〈∇g(x), x+ − x〉+
Lt2

2
‖Gt(x)‖2

≤ g(x) + 〈∇g(x), x+ − x〉+
t

2
‖Gt(x)‖2,

The last inequality holds provided Lt ≤ 1. Combining this with

g(x) ≤ g(z) + 〈∇g(x), x− z〉

we get

g(x+) ≤ g(z) + 〈∇g(x), x+ − z〉+
t

2
‖Gt(x)‖2.

3. From first-order condition at x+ of f

f(z) ≥ f(x+) + 〈p, z − x+〉 for all p ∈ ∂f(x+).

Choosing p = Gt(x)−∇g(x), we get

f(x+) ≤ f(z) + 〈Gt(x)−∇g(x), x+ − z〉.

4. Adding the above two inequalities, we get

h(x+) ≤ h(z) + 〈Gt(x), x+ − z〉+
t

2
‖Gt(x)‖2

Taking z = x, we get

h(x+) ≤ h(x)− t

2
‖Gt(x)‖2.

Taking z = x∗, we get

h(x+)− h(x∗) ≤ 〈Gt(x), x+ − x∗〉+
t

2
‖Gt(x)‖2

=
1

2t

(
‖x+ − x∗ + tGt(x)‖2 − ‖x+ − x∗‖2

)
=

1

2t

(
‖x− x∗‖2 − ‖x+ − x∗‖2

)

2.7 Augmented Lagrangian Method

Problem
minFP (x) := f(x) + g(Ax)

Equivalent to the primal problem with constraint

min f(x) + g(y) subject to Ax = y

Assumptions

• f and g are closed and convex.
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Examples:

• g(y) = ι{b}(y) =

{
0 if y = b
∞ otherwise

The corresponding g∗(z) = 〈z, b〉.

• g(y) = ιC(y)

• g(y) = ‖y − b‖2.

The Lagrangian is
L(x, y, z) := f(x) + g(y) + 〈z,Ax− y〉.

The primal function is
FP (x) = inf

y
sup
z
L(x, y, z).

The primal problem is
inf
x
FP (x) = inf

x
inf
y

sup
z
L(x, y, z).

The dual problem is

sup
z

inf
x,y

L(x, y, z) = sup
z

[
inf
x

(f(x) + 〈z,Ax〉) + inf
y

(g(y)− 〈z, y〉)
]

= sup
z

[
− sup

x
(〈−A∗z, x〉 − f(x))− sup

y
(〈z, y〉 − g(y))

]
= sup

z
(−f∗(−A∗z)− g∗(z)) = sup

z
(FD(z))

Thus, the dual function FD(z) is defined as

FD(z) := inf
x,y

L(x, y, z) = − (f∗(−A∗z) + g∗(z)) .

and the dual problem is
sup
z
PD(z).

We shall solve this dual problem by proximal point method:

zk = proxtFD
(zk−1) = argmaxu

[
−f∗(−ATu)− g∗(u)− 1

2t
‖u− zk−1‖2

]
We have

sup
u

(
−f∗(−ATu)− g∗(u)− 1

2t
‖u− z‖2

)
= sup

u

(
inf
x,y

L(x, y, u)− 1

2t
‖u− z‖2

)
= sup

u
inf
x,y

(
f(x) + g(y) + 〈u,Ax− y〉 − 1

2t
‖u− z‖2

)
= inf

x,y
sup
u

(
f(x) + g(y) + 〈u,Ax− y〉 − 1

2t
‖u− z‖2

)
= inf

x,y

(
f(x) + g(y) + 〈z,Ax− y〉+

t

2
‖Ax− y‖2

)
.
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Here, the maximum u = z + t(Ax− y). Thus, we define the augmented Lagrangian to be

Lt(x, y, z) := f(x) + g(y) + 〈z,Ax− y〉+
t

2
‖Ax− y‖2

The augmented Lagrangian method is

(xk, yk) = argminx,yLt(x, y, z
k−1)

zk = zk−1 + t(Axk − yk)

Thus, the Augmented Lagrangian method is equivalent to the proximal point method applied to the dual
problem:

sup
z

(−f∗(−A∗z)− g∗(z)) .

2.8 Alternating direction method of multipliers(ADMM)

Problem
min f1(x1) + f2(x2) subject to A1x1 +A2x2 − b = 0.

Assumptions

• fi are closed and convex.

ADMM

• Define

Lt(x1, x2, z) := f1(x1) + f2(x2) + 〈z,A1x1 +A2x2 − b〉+
t

2
‖A1x1 +A2x2 − b‖2.

• ADMM:

xk1 = argminx1Lt(x1, x
k−1
2 , zk−1)

= argminx1

(
f1(x1) +

t

2
‖A1x1 +A2x

k−1
2 − b+

1

t
zk−1‖2

)
xk2 = argminx2Lt(x

k
1, x2, z

k−1)

= argminx2

(
f2(x2) +

t

2
‖A1x

k
1 +A2x2 − b+

1

t
zk−1‖2

)
zk = zk−1 + t(A1x

k
1 +A2x

k
2 − b)

• ADMM is the Douglas-Rachford method applied to the dual problem:

max
z

(
−〈b, z〉 − f∗1 (−AT1 z)

)
+
(
−f∗2 (−AT2 z)

)
:= −h1(z)− h2(z).

• Douglas-Rachford method
minh1(z) + h2(z)

zk = proxh1(yk−1)

yk = yk−1 + proxh2(2zk − yk−1)− zk.

If we call (I + ∂h1)−1 = A and (I + ∂h2)−1 = B. These two operators are firmly nonexpansive.
The Douglas-Rachford method is to find the fixed point of yk = Tyk−1.

T = I +A+B(2A− I).
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2.9 Primal dual formulation

Consider
inf
x

(f(x) + g(Ax))

Let
FP (x) := f(x) + g(Ax)

Define y = Ax consider infx,y f(x) + g(y) subject to y = Ax. Now, introduce method of Lagrange
multiplier: consider

LP (x, y, z) = f(x) + g(y) + 〈z,Ax− y〉

Then
FP (x) = inf

y
sup
z
LP (x, y, z)

The problem is
inf
x

inf
y

sup
z
LP (x, y, z)

The dual problem is
sup
z

inf
x,y

LP (x, y, z)

We find that
inf
x,y

LP (x, y, z) = −f∗(−A∗z)− g∗(z). := FD(z)

By assuming optimality condition, we have

sup
z

inf
x,y

LP (x, y, z) = sup
z
FD(z).

If we take infy first

inf
y
LP (x, y, z) = inf

y
(f(x) + g(y) + 〈z,Ax− y〉) = f(x) + 〈z,Ax〉 − g∗(z) := LPD(x, z).

Then the problem is
inf
x

sup
z
LPD(x, z).

On the other hand, we can start from FD(z) := −f∗(−A∗z)− g∗(z). Consider

LD(z, w, x) = −f∗(w)− g∗(z)− 〈x,−A∗z − w〉

then we have
sup
w

inf
x
LD(z, w, x) = FD(z).

If instead, we exchange the order of inf and sup,

sup
z,w

LD(z, w, x) = sup
z,w

(−f∗(w)− g∗(z)− 〈x,−A∗z − w〉) = f(x) + g(Ax) = FP (x).

We can also take supw first, then we get

sup
w
LD(z, w, x) = sup

w
(−f∗(w)− g∗(z)− 〈x,−A∗z − w〉) = f(x)− g∗(z) + 〈Ax, z〉 = LPD(x, z).
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Let us summarize

FP (x) = f(x) + g(Ax)

FD(z) = −f∗(−Az)− g∗(z)
LP (x, y, z) := f(x) + g(y) + 〈z,Ax− y〉
LD(z, w, x) := −f∗(w)− g∗(z)− 〈x,−A∗z − w〉
LPD(x, z) := inf

y
LP (x, y, z) = sup

w
LD(z, w, x) = f(x)− g∗(z) + 〈z,Ax〉

FP (x) = sup
z
LPD(x, z)

FD(z) = inf
x
LPD(x, z)

By assuming optimality condition, we have

inf
x

sup
z
LPD(x, z) = sup

z
inf
x
LP (x, z).
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