Compressive Sensing

I-Liang Chern
Department of Mathematics
National Taiwan University

Fall, 2016

Three parts of CS in this lecture

- Theory
- Optimization Algorithms
- Applications: students' presentations
- CS + Image Science,
- CS + Brain and Neuroscience,
- CS + Data Science
- CS + PDEs
- CS + ...

Issues of CS

- Looking for sparse solution x from the measurement $y=A x$.
- A is $m \times N$ matrix, called measurement matrix. Usually $m \ll N$.
- x is assumed to be sparse, namely

$$
\begin{gathered}
\|x\|_{0}:=\#\left\{x_{i} \neq 0\right\}=s \ll N . \\
(P 0) \quad \min \|x\|_{0} \text { subject to } A x=y
\end{gathered}
$$

- Issues:
- For what's kind of A can one recover x exactly? Or how do we design measurement matrix?
- Provide an algorithm to reconstruct the sparse vector x.

References: books

Theory

- Simon Foucart, Holger Rauhut, A Mathematical Introduction to Compressive Sensing
Optimation Algorithms
- Boyd and Vandenberghe, Convex Optimization
- Neal Parikh and Stephen Boyd, Proximal Algorithms

Applications

- Vishal M. Patel, Rama Chellappa, Sparse Representations and Compressive Sensing for Imaging and Vision
- H. Boche, R. Calderbank, G. Kutyniok and J. Vybiral, Compressive Sensing and Its Applications
- Y. Eldar and G. Kutyniok, Compressive Sensing: Theory

References: Webpages

- compressive sensing resources
- Tutorial: see Compressive Sensing Resources
- Codes: http://web.stanford.edu/~boyd/papers/ prox_algs.html
- Candes lecture: Stats 330 (CME 362) An Introduction to Compressed Sensing http://statweb.stanford.edu/ ~candes/stats330/index.shtml

Motivations

An invitation to Compressive Sensing

- Sampling Theory
- Sparse Approximation
- Error Correction
- Statistics and Machine Learning
- Low-Rank Matrix Recovery and Matrix Completion
- See more from Compressive Sensing Resources

Theory: Outline

- Three Algorithms:
- Basis Pursuit
- Matching Pursuit (greedy algorithm)
- Thresholding-based methods
- Conditions on A for possible recovery of sparse vector
- Mutual incoherence
- Restricted isometry property
- What kinds of A for possible recovery of sparse vector
- Subgaussian Random matrices (Gaussian, Bernoulli, ...)
- Random sampling BOS (Fourier, wavelets, etc.)

Three kinds of Algorithms

Problem: Suppose x is a sparse vector and measured through A by $y=A x$. The problem is to recovery x from y and A :

$$
\text { (P0) } \quad \min \|z\|_{0} \text { subject to } A z=y \text {. }
$$

This is an NP hard problem. It is not practical to solve it directly.
Instead, three algorithms (polynomial computational complexity) are proposed:

- Basis Pursuit
- Matching Pursuit (greedy algorithm)
- Thresholding-based methods

Basis Pursuit

Solve a convex relaxation problem

$$
\text { (P1) } \quad \min \|z\|_{1} \text { subject to } A z=y
$$

Question: What kinds of A for possible recovery of sparse vector via basis pursuit.

Orthogonal Matching Pursuit

OMP algorithm: ${ }^{2}$

- $S^{n+1}=S^{n} \cup\left\{j_{n+1}\right\}, j_{n+1}=\operatorname{argmax}_{j \in \overline{S^{n}}}\left|\left\langle a_{j},\left(y-A x^{n}\right)\right\rangle\right|$
- $x^{n+1}=\operatorname{argmin}_{z}\left\{\|(y-A z)\|^{2} \mid \operatorname{supp}(z) \subset S^{n+1}\right\}$

Question: What kinds of A for possible recovery of sparse vector via Orthogonal Matching Pursuit?

$$
{ }^{2}[N]=\{1, \ldots, N\}, S \subset[N], \bar{S}=[N] \backslash S
$$

Thresholding-based methods

Suppose the sparse s is known. Given s and the measured data y, ${ }^{3}$

- $S^{\#}:=L_{s}\left(A^{*} y\right)$
- $x^{\#}=\operatorname{argmin}_{z}\left\{\|y-A z\| \mid \operatorname{supp}(z) \subset S^{\#}\right\}$

Question: What kinds of A for possible recovery of sparse vector via Thresholding-based method?

[^0]
Conditions on A for possible recovery sparse vector

- Null space property: necessary \& sufficient algebraic conditions, but difficult to verify
- Mutual Incoherence: simple sufficient condition, but not sharp
- Restrict Isometry Property (RIP): sharp sufficient condition, but may be hard to verify.

Algebraic Conditions on measurement matrix A

- null space property: for exact recovery of sparse vector;
- stable null space property: for stable recovery of compressible vector;
- robust null space property: for robust recovery (under small perturbation of measurement).

Exact recovery

- Null space property: A ($m \times N$ matrix) satisfies the null-space property of order s if for any index set S with $|S| \leq s$, it satisfies

$$
\left\|v_{S}\right\|_{1}<\left\|v_{\bar{S}}\right\|_{1} \text { for all } v \in \operatorname{Ker} A \backslash\{0\}
$$

Theorem

Given $m \times N$ matrix A. Every s-sparse vector x can be recover by (P1) iff A satisfies the null space property of order s.

Stability

- Compressibility: $\sigma_{s}(x)_{p}:=\min _{z}\left\{\|z-x\|_{p} \mid\|z\|_{0} \leq s\right\}$
- Stable null space property: There exists $\rho<1$ s.t. for any S with $|S| \leq s$,

$$
\left\|v_{S}\right\|_{1} \leq \rho\left\|v_{\bar{S}}\right\|_{1} \text { for all } v \in \operatorname{Ker} A \backslash\{0\}
$$

Theorem
Let A satisfies the stable null space property. Then the solution $x^{\#}$ of (P1) satisfies

$$
\left\|x^{\#}-x\right\|_{1} \leq \frac{2(1+\rho)}{1-\rho} \sigma_{s}(x)_{1}
$$

Robustness

- A is satisfies robust null space property of order s if there exist constants $0<\rho<1$ and $\tau>0$ such that for any index set S with $|S| \leq s$, we have

$$
\left\|v_{S}\right\|_{1} \leq \rho\left\|v_{\bar{S}}\right\|_{1}+\tau\|A v\| \text { for all } v \in \mathbb{C}^{N}
$$

Theorem
Let A satisfies the robust null space property and $y=A x+e$. Then the solution $x^{\#}$ of (P1) satisfies

$$
\left\|x^{\#}-x\right\|_{1} \leq \frac{2(1+\rho)}{1-\rho} \sigma_{s}(x)_{1}+\frac{4 \tau}{1-\rho}\|e\|
$$

Condition on A : Mutual Incoherence

- Let $A=\left[a_{1}, \cdots, a_{N}\right], a_{j}$ normalized column m-vector. ${ }^{4}$
- Suppose supp $(x)=S$. Then solving $A z=A x$ can recover x uniquely $\Leftrightarrow A_{S}: \mathbb{C}^{s} \rightarrow \mathbb{C}^{m}$ is 1-1
$\Leftrightarrow A_{S}^{*} A_{S}: \mathbb{C}^{s} \rightarrow \mathbb{C}^{s}$ is invertible, where $A_{S}^{*} A_{S}=\left(\left\langle a_{i}, a_{j}\right\rangle\right)_{i, j \in S}$.

$$
{ }^{4} A_{S}=\left[a_{j_{1}}, \cdots, a_{j_{s}}\right], S=\left\{j_{1}, \ldots, j_{s}\right\}
$$

Measure the coherence

Let $\mathbf{A}=\left[a_{1}, \ldots, a_{N}\right]$ be an $m \times N$ matrix with $\left\|a_{j}\right\|_{2}=1 \forall j$.
Definition

1. Coherence of \mathbf{A} is defined to be

$$
\mu(\mathbf{A})=\max _{i \neq j}\left|\left\langle a_{i}, a_{j}\right\rangle\right| .
$$

2. The ℓ_{1}-coherence function: for $1 \leq s \leq N-1$

$$
\mu_{1}(s):=\max _{i \in[N]} \max \left\{\sum_{j \in S}\left|\left\langle a_{i}, a_{j}\right\rangle\right|, S \subset[N],|S|=s, i \notin S\right\}
$$

Question: How small of μ or $\mu_{1}(s)$ leads to (P1) $\Leftrightarrow(\mathrm{P} 0)$?

Theorem

We have: for all s-sparse vector x

$$
\left(1-\mu_{1}(s-1)\right)\|x\|_{2}^{2} \leq\|A x\|_{2}^{2} \leq\left(1+\mu_{1}(s-1)\right)\|x\|_{2}^{2} .
$$

Equivalently, the spectrum

$$
\sigma\left(A_{S}^{*} A_{S}\right) \subset\left[1-\mu_{1}(s-1), 1+\mu_{1}(s-1)\right]
$$

for all S with $|S| \leq s$. In particular, $A_{S}^{*} A_{S}$ is invertible for all $|S| \leq s$ if

$$
\mu_{1}(s-1)<1 .
$$

Mutual Incoherence \Rightarrow Exact Recovery

Theorem
If $\mu_{1}(s)+\mu_{1}(s-1)<1$ or $\mu<1 /(2 s-1)$, then both basis pursuit and orthogonal matching pursuit are successful to recover s-sparse vector.

Theorem
If $2 \mu_{1}(s)+\mu_{1}(s-1)<1$ or $\mu<1 /(3 s-1)$, then hard thresholding pursuit can recover s-sparse vector x after s step.

Matrices with small coherence

Def. The normalized column vectors $\left(a_{1}, \cdots, a_{N}\right)$ are

- Equiangular: if there exists a c such that

$$
\left|\left\langle a_{i}, a_{j}\right\rangle\right|=c \text { for } i \neq j
$$

- Tight frame: if there exists a $\lambda>0$ s.t.

$$
\|x\|^{2}=\lambda \sum_{j=1}^{N}\left|\left\langle x, a_{j}\right\rangle\right|^{2} \text { for all } x
$$

Theorem
It holds $\mu \geq \sqrt{\frac{N-m}{m(N-1)}}$. The equality holds iff $\left(a_{1}, \cdots, a_{N}\right)$ are equiangular tight frame.

Small coherence

- $\left(a_{1}, \cdots, a_{N}\right)$ are equiangular implies $N \leq m^{2}$.
- The condition $\mu<1 /(2 s-1)$ is too restrictive in applications. Because for the smallest conference,
- for large N, smallest coherence $\mu \sim 1 / \sqrt{m}$,
- $\frac{1}{\sqrt{m}} \sim \mu<1 /(2 s-1)$ leads to $m \geq s^{2}$;
- The optimal m is $m \sim s \ln (N / s)$ (from RIP). This means that those which satisfy incoherence condition is very limited.

Restricted Isometry Property

- Def. $\delta_{s}(A)$ is the smallest δ such that

$$
(1-\delta)\|x\|^{2} \leq\|A x\|^{2} \leq(1+\delta)\|x\|^{2}
$$

for all s-sparse vector x.

- A satisfies RIP of order s if δ_{s} is small.
- Thms. Basis Pursuit, Orthogonal Matching Pursuit, Iterative Hard Pursuit and Hard Threasholding Pursuit are successful if

BP	IHP	HTP	OMP
$\delta_{2 s}<0.6248$	$\delta_{3 s}<0.5773$	$\delta_{3 s}<0.5773$	$\delta_{13 s}<0.1666$

What kind of A satisfying RIP

- Given an $m \times N$ matrix A with $N \leq m^{2} . \delta_{s}(A)$ has upper and lower estimates

$$
\sqrt{c s} / \sqrt{m} \leq \delta_{s} \leq c s / \sqrt{m}
$$

There is a sufficient gap between the two bounds.

- In fact, certain random matrices satisfy $\delta_{s} \leq \delta$ with high probability provided

$$
m \geq \frac{C}{\delta^{2}} s \ln (e N / s)
$$

- Further, any matrix A with $\delta_{s} \leq \delta$ requires

$$
m \geq C_{\delta} s \ln (e N / s)
$$

What's kind of matrices satisfying RIP

- Random matrices with
- iid Gaussian entries
- iid Bernoulli entries $(+/-1)$
- iid subgaussian entries
- random Fourier ensemble
- random ensemble in bounded orthogonal systems
- In each case, $m=O(s \ln N)$, they satisfy RIP with very high probability $\left(1-e^{-C m}\right)$..

RPI for subgaussian matrices

Theorem

Let A be a subgaussian matrix. Then there exists a constant
C such that the RIP constant δ_{s} of the normalized matrix
$\frac{1}{\sqrt{m}} A$ satisfies $\delta_{s} \leq \delta$ with probability at least
$1-2 \exp \left(-\delta^{2} m /(2 C)\right)$, provided

$$
m \geq \frac{2 C}{\delta} s \ln (e N / s) .
$$

- A random variable X is called subgaussian if $P(|X| \geq t) \leq \beta e^{-\kappa t^{2}}$.
- A random matrix A is called subgaussian if each entry is iid subgaussian (mean 0 , variance 1).

Random sampling in bounded orthonormal system

- Bounded orthonormal system: $\left\{\phi_{j}: \mathcal{D} \mapsto \mathbb{C}\right\}$ be orthonormal system in $L^{2}(\mathcal{D}, \nu)$, and $\left\|\phi_{j}\right\|_{\infty} \leq K, \forall j$.
- $\left\{t_{i}, i=1, \ldots, m\right\}$ are independent random variables with range in \mathcal{D}.
- $A=\left(\phi_{j}\left(t_{i}\right)\right)_{m \times N}$ is a random matrix.

Theorem

Let x be s-sparse and A be random sampling from BOS with constant K. If

$$
m \geq C K^{2} s \ln ^{2}(6 N / \epsilon)
$$

then with probability at least $1-\epsilon$, we have exact recovery from basis pursuit.

Concentration Lemma

Lemma (Concentration Inequality)

Let A be iid subgaussian $m \times N$ matrix. Then for any $x \in \mathbb{R}^{N}$ and for any $\delta \in(0,1)$,

$$
P\left(\left|m^{-1}\|A x\|^{2}-\|x\|^{2}\right| \geq \delta\|x\|^{2}\right) \leq 2 \exp \left(-c t^{2} m\right),
$$

where c depends on the subgaussian parameter only.

Connection to Johnson-Lindenstrauss Lemma

Lemma (Johnson-Lindenstrauss)

Given $x_{1}, \ldots, x_{M} \in \mathbb{R}^{N}$ arbitrary. Given $\delta>0$. If
$m>C \delta^{-2} \ln M$, then there exists a linear map $A: \mathbb{R}^{N} \rightarrow \mathbb{R}^{m}$ such that

$$
(1-\delta)\left\|x_{j}-x_{\ell}\right\|^{2} \leq\left\|A\left(x_{j}-x_{\ell}\right)\right\|^{2} \leq(1+\delta)\left\|x_{j}-x_{\ell}\right\|^{2}
$$

for any $1 \leq j, \ell \leq M$.
Remarks

- It means we can project high dimension to low dimension with A being nearly relative isometry.
- The construction is probabilistic.

Optimization Algorithms

Problem to solve (Assume convexity)

- $\min f(x)$ subject to $y=A x$

Main References:

- Boyd and Vandenberghe, Convex Optimization. This book can be downloaded. It provides a thorough material about optimization. Both of them have slides. They can also be downloaded from websites.
- Neal Parikh and Stephen Boyd, Proximal Algorithms
- Vandenberghe, Convex Optimization (slides)

Convex Optimization Algorithms

- Basic convex analysis
- Gradient methods and Newton's methods
- Proximal algorithms
- Augmented Lagrange Method (ALM) and Alternative Direction Method of Multipliers (ADMM)

[^0]: ${ }^{3} L_{s}(x)$ is the index set of x whose absolute values are s-largest.

