Compressive Sensing

I-Liang Chern

Department of Mathematics National Taiwan University

Fall, 2016

Three parts of CS in this lecture

- Theory
- Optimization Algorithms
- Applications: students' presentations
 - CS + Image Science,
 - CS + Brain and Neuroscience,
 - CS + Data Science
 - CS + PDEs
 - ► CS + ...

Issues of CS

- ► Looking for sparse solution *x* from the measurement *y* = *Ax*.
- ► A is m × N matrix, called measurement matrix. Usually m << N.</p>
- x is assumed to be sparse, namely

$$\|x\|_{0} := \#\{x_{i} \neq 0\} = s << N.$$
(P0) $\min \|x\|_{0}$ subject to $Ax = y.$

Issues:

- For what's kind of A can one recover x exactly? Or how do we design measurement matrix?
- Provide an algorithm to reconstruct the sparse vector x.

References: books

Theory

 Simon Foucart, Holger Rauhut, A Mathematical Introduction to Compressive Sensing

Optimation Algorithms

- ► Boyd and Vandenberghe, Convex Optimization
- Neal Parikh and Stephen Boyd, Proximal Algorithms

Applications

- Vishal M. Patel, Rama Chellappa, Sparse Representations and Compressive Sensing for Imaging and Vision
- H. Boche, R. Calderbank, G. Kutyniok and J. Vybiral, Compressive Sensing and Its Applications
- > Y. Eldar and G. Kutyniok, Compressive Sensing: Theory

References: Webpages

- compressive sensing resources
- Tutorial: see Compressive Sensing Resources
- Codes: http://web.stanford.edu/~boyd/papers/ prox_algs.html
- Candes lecture: Stats 330 (CME 362) An Introduction to Compressed Sensing http://statweb.stanford.edu/ ~candes/stats330/index.shtml

Motivations

An invitation to Compressive Sensing

- Sampling Theory
- Sparse Approximation
- Error Correction
- Statistics and Machine Learning
- Low-Rank Matrix Recovery and Matrix Completion
- ▶ ...
- See more from Compressive Sensing Resources

Theory: Outline

- Three Algorithms:
 - Basis Pursuit
 - Matching Pursuit (greedy algorithm)
 - Thresholding-based methods
- ► Conditions on A for possible recovery of sparse vector
 - Mutual incoherence
 - Restricted isometry property
- \blacktriangleright What kinds of A for possible recovery of sparse vector
 - Subgaussian Random matrices (Gaussian, Bernoulli, ...)
 - Random sampling BOS (Fourier, wavelets, etc.)

¹Ref: Foucart and Rauhut's book (2013); Papers of Donoho; Candes, Tao; Cai.

Problem: Suppose x is a sparse vector and measured through A by y = Ax. The problem is to recovery x from y and A:

(P0) $\min ||z||_0$ subject to Az = y.

This is an NP hard problem. It is not practical to solve it directly.

Instead, three algorithms (polynomial computational complexity) are proposed:

- Basis Pursuit
- Matching Pursuit (greedy algorithm)
- Thresholding-based methods

Basis Pursuit

Solve a convex relaxation problem

(P1)
$$\min \|z\|_1$$
 subject to $Az = y$

Question: What kinds of A for possible recovery of sparse vector via basis pursuit.

Orthogonal Matching Pursuit

OMP algorithm: ²

$$\blacktriangleright S^{n+1} = S^n \cup \{j_{n+1}\}, \ j_{n+1} = \operatorname{argmax}_{j \in \overline{S^n}} |\langle a_j, (y - Ax^n) \rangle|$$

 $\blacktriangleright x^{n+1} = \operatorname{argmin}_z\{\|(y - Az)\|^2 \ |\operatorname{supp} (z) \subset S^{n+1}\}$

Question: What kinds of A for possible recovery of sparse vector via Orthogonal Matching Pursuit?

²[N] = {1,...,N},
$$S \subset [N], \bar{S} = [N] \setminus S.$$

Suppose the sparse s is known. Given s and the measured data $y,\,^3$

Question: What kinds of A for possible recovery of sparse vector via Thresholding-based method?

 $^{{}^{3}}L_{s}(x)$ is the index set of x whose absolute values are s-largest.

Conditions on A for possible recovery sparse vector

- Null space property: necessary & sufficient algebraic conditions, but difficult to verify
- Mutual Incoherence: simple sufficient condition, but not sharp
- Restrict Isometry Property (RIP): sharp sufficient condition, but may be hard to verify.

Algebraic Conditions on measurement matrix A

- null space property: for exact recovery of sparse vector;
- stable null space property: for stable recovery of compressible vector;
- robust null space property: for robust recovery (under small perturbation of measurement).

Exact recovery

► Null space property: A (m × N matrix) satisfies the null-space property of order s if for any index set S with |S| ≤ s, it satisfies

$$||v_S||_1 < ||v_{\bar{S}}||_1$$
 for all $v \in \operatorname{Ker} A \setminus \{0\}$

Theorem

Given $m \times N$ matrix A. Every s-sparse vector x can be recover by (P1) iff A satisfies the null space property of order s.

Stability

- Compressibility: $\sigma_s(x)_p := \min_z \{ \|z x\|_p \mid \|z\|_0 \le s \}$
- \blacktriangleright Stable null space property: There exists $\rho < 1$ s.t. for any S with $|S| \leq s$,

$$||v_S||_1 \le \rho ||v_{\bar{S}}||_1$$
 for all $v \in \operatorname{Ker} A \setminus \{0\}$

Theorem

Let A satisfies the stable null space property. Then the solution $x^{\#}$ of (P1) satisfies

$$||x^{\#} - x||_1 \le \frac{2(1+\rho)}{1-\rho}\sigma_s(x)_1$$

Robustness

A is satisfies robust null space property of order s if there exist constants 0 < ρ < 1 and τ > 0 such that for any index set S with |S| ≤ s, we have

$$\|v_S\|_1 \le \rho \|v_{\bar{S}}\|_1 + \tau \|Av\|$$
 for all $v \in \mathbb{C}^N$

Theorem

Let A satisfies the robust null space property and y = Ax + e. Then the solution $x^{\#}$ of (P1) satisfies

$$\|x^{\#} - x\|_{1} \le \frac{2(1+\rho)}{1-\rho}\sigma_{s}(x)_{1} + \frac{4\tau}{1-\rho}\|e\|$$

Condition on A: Mutual Incoherence

• Let
$$A = [a_1, \cdots, a_N]$$
, a_j normalized column *m*-vector. ⁴

⁴
$$A_S = [a_{j_1}, \cdots, a_{j_s}], S = \{j_1, ..., j_s\}$$

Let $\mathbf{A} = [a_1, ..., a_N]$ be an $m \times N$ matrix with $||a_j||_2 = 1 \forall j$. Definition

1. Coherence of ${\bf A}$ is defined to be

$$\mu(\mathbf{A}) = \max_{i \neq j} |\langle a_i, a_j \rangle|.$$

2. The ℓ_1 -coherence function: for $1 \le s \le N-1$

$$\mu_1(s) := \max_{i \in [N]} \max\{\sum_{j \in S} |\langle a_i, a_j \rangle|, S \subset [N], |S| = s, i \notin S\}$$

Question: How small of μ or $\mu_1(s)$ leads to (P1) \Leftrightarrow (P0)?

Theorem

We have: for all s-sparse vector x

$$(1 - \mu_1(s - 1)) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \mu_1(s - 1)) \|x\|_2^2.$$

Equivalently, the spectrum

$$\sigma(A_S^*A_S) \subset [1 - \mu_1(s - 1), 1 + \mu_1(s - 1)]$$

for all S with $|S| \leq s.$ In particular, $A^*_S A_S$ is invertible for all $|S| \leq s$ if

$$\mu_1(s-1) < 1.$$

Theorem

If $\mu_1(s) + \mu_1(s-1) < 1$ or $\mu < 1/(2s-1)$, then both basis pursuit and orthogonal matching pursuit are successful to recover *s*-sparse vector.

Theorem

If $2\mu_1(s) + \mu_1(s-1) < 1$ or $\mu < 1/(3s-1)$, then hard thresholding pursuit can recover *s*-sparse vector *x* after *s* step. Def. The normalized column vectors (a_1, \cdots, a_N) are

• Equiangular: if there exists a c such that

$$|\langle a_i, a_j \rangle| = c \text{ for } i \neq j.$$

• Tight frame: if there exists a
$$\lambda > 0$$
 s.t
 $||x||^2 = \lambda \sum_{j=1}^N |\langle x, a_j \rangle|^2$ for all x

Theorem

It holds $\mu \ge \sqrt{\frac{N-m}{m(N-1)}}$. The equality holds iff (a_1, \dots, a_N) are equiangular tight frame.

Small coherence

- (a_1, \cdots, a_N) are equiangular implies $N \leq m^2$.
- ▶ The condition $\mu < 1/(2s 1)$ is too restrictive in applications. Because for the smallest conference,
 - for large N, smallest coherence $\mu \sim 1/\sqrt{m},$
 - $\frac{1}{\sqrt{m}} \sim \mu < 1/(2s-1)$ leads to $m \ge s^2$;
- ► The optimal m is m ~ s ln(N/s) (from RIP). This means that those which satisfy incoherence condition is very limited.

• Def. $\delta_s(A)$ is the smallest δ such that

$$(1-\delta)||x||^2 \le ||Ax||^2 \le (1+\delta)||x||^2.$$

for all s-sparse vector x.

- A satisfies RIP of order s if δ_s is small.
- Thms. Basis Pursuit, Orthogonal Matching Pursuit , Iterative Hard Pursuit and Hard Threasholding Pursuit are successful if

BP	IHP	HTP	OMP
$\delta_{2s} < 0.6248$	$\delta_{3s} < 0.5773$	$\delta_{3s} < 0.5773$	$\delta_{13s} < 0.1666$

What kind of A satisfying RIP

► Given an m × N matrix A with N ≤ m². δ_s(A) has upper and lower estimates

$$\sqrt{cs}/\sqrt{m} \le \delta_s \le cs/\sqrt{m}$$

There is a sufficient gap between the two bounds.

▶ In fact, certain random matrices satisfy $\delta_s \leq \delta$ with high probability provided

$$m \geq \frac{C}{\delta^2} s \ln(eN/s)$$

• Further, any matrix A with $\delta_s \leq \delta$ requires

 $m \ge C_{\delta} s \ln(eN/s).$

What's kind of matrices satisfying RIP

- Random matrices with
 - iid Gaussian entries
 - iid Bernoulli entries (+/-1)
 - iid subgaussian entries
 - random Fourier ensemble
 - random ensemble in bounded orthogonal systems
- ▶ In each case, $m = O(s \ln N)$, they satisfy RIP with very high probability $(1 e^{-Cm})$..

RPI for subgaussian matrices

Theorem

Let A be a subgaussian matrix. Then there exists a constant C such that the RIP constant δ_s of the normalized matrix $\frac{1}{\sqrt{m}}A$ satisfies $\delta_s \leq \delta$ with probability at least $1 - 2\exp(-\delta^2 m/(2C))$, provided

$$m \ge \frac{2C}{\delta} s \ln(eN/s).$$

- A random variable X is called subgaussian if P(|X| ≥ t) ≤ βe^{-κt²}.
- ► A random matrix A is called subgaussian if each entry is iid subgaussian (mean 0, variance 1).

26/31

Random sampling in bounded orthonormal system

- Bounded orthonormal system: {φ_j : D → C} be orthonormal system in L²(D, ν), and ||φ_j||_∞ ≤ K, ∀ j.
- {t_i, i = 1, ..., m} are independent random variables with range in D.
- $A = (\phi_j(t_i))_{m \times N}$ is a random matrix.

Theorem

Let x be s-sparse and A be random sampling from BOS with constant K. If

$$m \ge CK^2 s \ln^2(6N/\epsilon),$$

then with probability at least $1 - \epsilon$, we have exact recovery from basis pursuit.

Lemma (Concentration Inequality)

Let A be iid subgaussian $m \times N$ matrix. Then for any $x \in \mathbb{R}^N$ and for any $\delta \in (0, 1)$,

$$P\left(\|m^{-1}\|Ax\|^2 - \|x\|^2\| \ge \delta \|x\|^2\right) \le 2\exp(-ct^2m),$$

where c depends on the subgaussian parameter only.

Lemma (Johnson-Lindenstrauss)

Given $x_1, ..., x_M \in \mathbb{R}^N$ arbitrary. Given $\delta > 0$. If $m > C\delta^{-2} \ln M$, then there exists a linear map $A : \mathbb{R}^N \to \mathbb{R}^m$ such that

$$(1-\delta)\|x_j - x_\ell\|^2 \le \|A(x_j - x_\ell)\|^2 \le (1+\delta)\|x_j - x_\ell\|^2$$

for any $1 \leq j, \ell \leq M$.

Remarks

- It means we can project high dimension to low dimension with A being nearly relative isometry.
- The construction is probabilistic.

Optimization Algorithms

Problem to solve (Assume convexity)

• $\min f(x)$ subject to y = Ax

Main References:

- Boyd and Vandenberghe, Convex Optimization. This book can be downloaded. It provides a thorough material about optimization. Both of them have slides. They can also be downloaded from websites.
- ► Neal Parikh and Stephen Boyd, Proximal Algorithms
- Vandenberghe, Convex Optimization (slides)

Convex Optimization Algorithms

- Basic convex analysis
- Gradient methods and Newton's methods
- Proximal algorithms
- Augmented Lagrange Method (ALM) and Alternative Direction Method of Multipliers (ADMM)