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What’s kind of matrices satisfying RIP

I Random matrices with

I iid Gaussian entries

I iid Bernoulli entries (+/− 1)

I iid subgaussian entries

I random Fourier ensemble

I random ensemble in bounded orthogonal systems

I In each case, m = O(s lnN), they satisfy RIP with very

high probability (1− e−Cm)..

This is a note from S. Foucart and H. Rauhut, A Mathematical Introduction to

Compressive Sensing, Springer 2013.
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Subgaussian random matrices

Definition
Let A be m×N real valued random matrix.

I Bernoulli random matrix: if each entries of A are independent Rademacher

random variables (i.e. takes ±1 with probability 1/2 on each);

I Gaussian random matrix: if each entries of A are independent standard

Gaussian random variables;

I Subgaussian random matrix: if each entries of A are independent subgaussian

random variables with mean 0 and variance 1, and satisfying

P (|ajk| ≥ t) ≤ βe−κt
2
, for all j ∈ [m], k ∈ [N ].

Remark. Bernoulli random matrices and Gaussian random matrices are subgaussian

random matrices.
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RIP for Subgaussian random matrices

Theorem (Main theorem)
Let A be an m×N subgaussian random matrix. Then there exists a constant C > 0

(depending on the subgaussian parameters β and κ) such that for any 0 < δ < 1 the

restricted isometry property of A/
√
m satisfies δs < δ with probability at least

1− 2 exp(−δ2m/(2C)) provided

m ≥ 2Cδ−2s ln(eN/s).

Remark. The term 1/
√
m is due to that we want to have the normalization of column

vectors. Since the variance of each entries is 1, the variance of the column vector

E[|aj |2] = m. Thus, E[|aj/
√
m|2] = 1. This normalization yields

E[‖
1
√
m

Ax‖2] = ‖x‖2.

4 / 25



Theorem
Let A be an m×N subgaussian random matrix. Then there exists a constant C > 0

(depending on the subgaussian parameters β and κ) and universal constants D1 and

D2 such that if

m ≥ 2Cδ−2s ln(eN/s)

then the following statement holds with probability at least 1− 2 exp(−δ2m/(2C)),

uniformly for every x ∈ Σs: given y = Ax + e with ‖e‖2 ≤
√
mη, for some η > 0, a

solution x# of

min
z∈CN

‖z‖1 subject to ‖Az− y‖2 ≤
√
mη

satisfies the estimates

‖x− x#‖2 ≤ D1
σs(x)1√

s
+D2η

‖x− x#‖1 ≤ D1σs(x)1 +D2
√
sη.

Proof. The above optimization problem is equivalent to

min
z∈CN

‖z‖1 subject to ‖
1
√
m

Az−
1
√
m

y‖2 ≤ η.

We apply the main theorem to 1√
m
A and get this theorem.

5 / 25



Outline of the Proof

1. A concentration lemma: Let A be a m×N subgaussian matrix with

subgaussian parameter c > 0. Then for any x ∈ RN and any t ∈ (0, 1),

P (|m−1‖Ax‖2 − ‖x‖2| ≥ t‖x‖2) ≤ 2 exp(−c̃mt2),

where c̃ depends only on c.

2. Part 1. given S ⊂ [N ] with |S| = s and given δ, ε ∈ (0, 1), if

m > Cδ−2(7s+ 2 ln(2ε−1)), where C = 2/(3c̃), then with probability at least

1− ε,
‖A∗SAS − Id‖2→2 < δ.

3. Part II. for δ, ε ∈ (0, 1) and when

m ≥ Cδ−2[s(9 + 2 ln(N/s)) + 2 ln(2ε−1)],

where C = 2/(3c̃), then δs(A) < δ with probability at least 1− ε.
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Proof concentration lemma.

1. We denote A = (Y t1 , ..., Y
t
m)t, where Y t` , ` = 1, ...,m are the row vectors of A.

For any x ∈ RN , let Z` := |〈Y`,x〉|2 − ‖x‖2. Then

m−1‖Ax‖2 − ‖x‖2 =
1

m

m∑
`=1

(|〈Y`,x〉|2 − ‖x‖2) =
1

m

m∑
`=1

Z`

2. For each `, from the independence of a`,j and a`,k, we have

E|〈Y`,x〉|2 =
N∑

j,k=1

xjxkE[a`,ja`,k] =
N∑
j=1

x2j = ‖x‖2.

Thus, E[Z`] = 0 for all ` ∈ [m].

3. Since each a`,k is subgaussian, we have 〈Y`,x〉 =
∑N
j=1 xja`,j is also

subgaussian. Thus, Z` = |〈Y`,x〉|2 is subexponential. That is, there exist

β, κ > 0 such that

P (|Z`| ≥ r) ≤ β exp(−κr).

4. From Bernstein inequality for subexponential random variables,

P

(
|

1

m

m∑
`=1

Z`| ≥ t
)

= P

(
|
m∑
`=1

Z`| ≥ tm
)
≤ 2 exp

(
−
κ2m2t2/2

2βm+ κmt

)

≤ 2 exp

(
−

κ2

4β + 2κ
mt2

)
= 2 exp(−c̃mt2).
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Proof of Part I.

1. Let us consider the ball

BS := {x | suppx ⊂ S, ‖x‖ ≤ 1}.

We will cover BS by BS ⊂
⋃
u∈U Bρ(u), where the radius ρ ∈ (0, 1/2) is to be

chosen later. The center set U are chosen as the follows. On the coordinate

axis xi for i ∈ S, we choose u = kρei, |k| ≤ 1/ρ. Thus, there are at most

1 + 2/ρ such centers on xi coordinate axis. The center set U is chosen to be

the Cartesian product of such centers from each coordinate axis xi with i ∈ S.

Thus,

|U | ≤
(

1 +
2

ρ

)s
.

2. The concentration inequality gives

P (|‖Au‖2 − ‖u‖2| ≥ t‖u‖2 for some u ∈ U)

≤
∑
u∈U

P (|‖Au‖2 − ‖u‖2| ≥ t‖u‖2) ≤ 2|U | exp(−c̃mt2)

≤ 2

(
1 +

2

ρ

)s
exp(−c̃mt2).

This is equivalent to

P (|‖Au‖2 − ‖u‖2| < t‖u‖2 for all u ∈ U) > 1− 2

(
1 +

2

ρ

)s
exp(−c̃mt2).
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3 Now, for any x ∈ BS , there exists u ∈ U such that ‖x− u‖ ≤ ρ < 1/2. Let us

write A∗SAS − Id by B.

|〈Bx,x〉| = |〈Bu, u〉+ 〈B(x + u),x− u〉| ≤ |〈Bu, u〉|+ |〈B(x + u),x− u〉|

< t+ ‖B‖2→2‖x + u‖‖x− u‖ ≤ t+ 2ρ‖B‖2→2.

This gives

‖B‖2→2 < t+ 2ρ‖B‖2→2, i.e. ‖B‖2→2 ≤
t

1− 2ρ
.

4 Now, we choose t = (1− 2ρ)δ. Then

P (‖A∗SAS − Id‖2→2 ≥ δ) ≤ 2

(
1 +

2

ρ

)s
exp(−c̃m(1− 2ρ)2δ2)

In order to have the right hand side to be smaller than ε, it requires

m ≥
1

c̃(1− 2ρ)2
δ−2(ln(1 + 2/ρ)s+ ln(2ε−1)).

Now we choose ρ = 2/(e7/2 − 1) ≈ 0.0623 so that 1/(1− 2ρ)2 ≤ 4/3 and

ln(1 + 2/ρ)/(1− 2ρ)2 ≤ 14/3. We get

P (‖A∗SAS − Id‖2→2 ≥ δ) ≤ ε

when

m ≥
2

3c̃
δ−2(7s+ 2 ln(2ε−1)).
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Proof of Part II.

1. The restricted isometry constant

δs = sup
S⊂[N ],|S|=s

‖A∗SAS − Id‖2→2.

There are

(
N

s

)
such S. Thus

P (δs ≥ δ) ≤
∑

S⊂[N ],|S|=s
P (‖A∗SAS − Id‖2→2 ≥ δ)

≤ 2

(
N

s

)(
1 +

2

ρ

)s
exp

(
−c̃δ2(1− 2ρ)2m

)
≤ 2

(
eN

s

)s (
1 +

2

ρ

)s
exp

(
−c̃δ2(1− 2ρ)2m

)
Here, we have used(

n

k

)
=
n(n− 1) · · · (n− k + 1)

k!
≤
nk

k!
=
kknk

k!kk
≤ ek

nk

kk
.
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2 Taking ρ = 2/(e7/2 − 1) as before yields that δs < δ with probability at least

1− ε provided

2

(
eN

s

)s (
1 +

2

ρ

)s
exp

(
−c̃δ2(1− 2ρ)2m

)
≤ ε

This equivalent to

m ≥
1

c̃δ2

(
4

3
s ln(eN/s) +

14

3
s+

4

3
ln(2ε−1)

)
≥ Cδ−2(s ln(eN/s)+ln(2ε−1)).

where C only depends on c̃.

3 Taking ε = 2 exp(−δ2m/(2C)) yields that the condition m ≥ 2Cδ−2s ln(eN/s)

guarantees that δs ≤ δ with probability at least 1− 2 exp(−mδ2/(2C)).
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Relation to the Johnson-Linderstrauss lemma

This concentration inequality is closely related to the classical John-Lindenstrauss

embedding lemma. We can also say that the J-L lemma leads to RIP.

Lemma (Johnson-Linderstrauss)
Let x1, ...,xM be M points in RN . Let η ∈ (0, 1) be a constant. Then there exists a

universal constant C > 0 and an m×N matrix B such that if m > Cη−2 lnM , then

(1− η)‖xj − x`‖22 ≤ ‖B(xj − x`)‖22 ≤ (1 + η)‖xj − x`‖22

for any j, ` ∈ [M ].
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1. Considering the set E = {xj − x` |, j, ` ∈ [M ], j < `}. We have

|E| = M(M − 1)/2.

2. Let A be an m×N subgaussian random matrix. By concentration inequality,

there exists a c̃ > 0 such that for each x ∈ E, we have

P (|‖
1
√
m

Ax‖2 − ‖x‖2| > η‖x‖2) ≤ 2 exp(−c̃mη2).

Thus,

P (|‖
1
√
m

Ax‖2 − ‖x‖2| ≤ η‖x‖2 for all x ∈ E) ≥ 1−M2 exp(−c̃mη2).

3. For ε ∈ (0, 1), if we choose m ≥ c̃−1η−2 ln(M/ε), then M2 exp(−c̃mη2) < ε.

Since ε < 1,

P (|‖
1
√
m

Ax‖2 − ‖x‖2| ≤ η‖x‖2 for all x ∈ E) ≥ 1− ε > 0.

We can recursively generate subgaussian matrix A until

|‖
1
√
m

Ax‖2 − ‖x‖2| ≤ η‖x‖2 for all x ∈ E

is valid. Such random matrix exists because the probability this happens is

greater than 0.
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Nonuniform recovery via random subgaussian

matrices

Theorem
Let x ∈ CN be an s-sparse vector. Let A ∈ Rm×N be a subgaussian random matrix

with subgaussian parameter c. If, for some ε ∈ (0, 1),

m ≥
4c

1− δ
s ln(2N/ε), with δ =

√
C

4c

(
7

ln(2N/ε)
+

2

s

)

(assuming N and s are large enough so that δ < 1), then with probability at least

1− ε the vector x is the unique minimizer of

‖z‖1 subject to Az = Ax.

The constant C = 2/(3c̃) depends only on the subgaussian parameter c.
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Remark: Difference between uniform and

nonuniform recovery

I Uniform recovery guarantee provides a lower probability estimate of the form

P (∀ s-sparse x, recovery of x is successful using A) ≥ 1− ε.

I Nonuniform recovery gives a statement of the form

∀s-sparse vector x, P ( recovery of x is successful using A) ≥ 1− ε.
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What’s kind of matrices satisfying RIP

I Random matrices with

I iid Gaussian entries

I iid Bernoulli entries (+/− 1)

I iid subgaussian entries

I random Fourier ensemble

I random ensemble in bounded orthogonal systems

I In each case, m = O(s lnN), they satisfy RIP with very

high probability (1− e−Cm)..

This is a note from S. Foucart and H. Rauhut, A Mathematical Introduction to

Compressive Sensing, Springer 2013.
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Random Sampling from Bounded Orthonormal

Systems

I In applications, we would like to represent data in terms of good basis such as

Fourier, wavelets. Suppose our function is sparse in terms of some orthonormal

basis. The question is how to sample them in order to recover the function

exactly.

I Let D ⊂ Rd be endowed with a probability measure ν. A set {φ1, ..., φN}

defined on D is called a bounded orthonormal system (BOS) if

I
∫
D φi(t)φj(t) dν(t) = δij

I There exists a K > 0 such that ‖φj‖∞ ≤ K for all j ∈ [N ].
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Random Sampling from BOS-2

I We consider function f defined on D of the form

f(t) =
N∑
i=1

xiφi(t).

I Let t1, ..., tm ∈ D be sampling points, chosen randomly according to the

probability ν on D.

I We are given the sampled values

y` = f(t`) =
N∑
k=1

φk(t`)xk, ` ∈ [m].

The matrix A := (φk(t`)), ` ∈ [m], k ∈ [N ] is called the randomly sampling

matrix associated with the BOS with bound K.
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Examples of BOS

I Trigonometric polynomials. Let D = [0, 1], ν the Lebesgue measure on [0, 1],

φk(t) = e2πikt.

We find the constant K = 1. We choose Γ ⊂ Z to be a set of size N . The set

{φk|k ∈ Γ} is a BOS. The sampling points t1, ..., tm are chosen independently

and uniformly at random from [0, 1].
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Examples of BOS

I Discrete orthonormal systems. Let U = [u1, ...,uN ] ∈ CN × CN be a unitary

matrix. The set D := [N ] and the measure ν is the counting measure. The

normalized function

φk(t) :
√
Nuk(t), t ∈ [N ].

The inner product of φk and φ` is∫
φk(t)φ`(t)dν(t) =

1

N

N∑
t=1

√
Nuk(t)

√
Nu`(t) = 〈uk,u`〉 = δk`.

We should require that there exists K > 0 such that
√
N max
t,k∈[N ]

|uk(t)| ≤ K.

We choose t1, ..., tm independently, uniformly at random from [N ]. The

randomly sampled matrix A is defined to be A = RT

√
NU, where

T = {t1, ..., tm} and RT : CN → Cm: (RT z)` = zt` , ` ∈ [m]. As a concrete

example is the discrete Fourier transform

Uk` =
1
√
N
e2πi(k−1)(`−1)/N , k, ` ∈ [N ].
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Examples of BOS

I Hadamard matrix. Hadamard matrix Hn ∈ R2n×2n can be viewed as a Fourier

transform on Zn2 = {0, 1}n. For j, ` ∈ [2n], write them in binary expansion

j =
n∑
k=1

jk2k−1 + 1, ` =
n∑
k=1

`k2k−1 + 1,

where jk, `k ∈ {0, 1}. The Hadamard matrix Hn is defined as

Hj,` =
1

2n/2
(−1)

∑n
k=1 jk`k .

The Hadamard matrix has a recursive expression

Hn =
1
√

2

(
Hn−1 Hn−1

Hn−1 −Hn−1

)
, H0 = (1),

which leads to a fast matrix-vector multiplication. The Hadamard matrix is

self-adjoint and orthogonal

Hn = H∗n = H−1
n .

Its column vectors form a BOS with K = 1.
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Nonuniform recovery via random sampling BOS

A sequence ε = (ε1, ..., εN ) is called a Rademacher sequence if εi are independent

Rademacher variable (i.e. it takes values ±1 with probability 1/2.)

A complex random variable which is uniformly distributed on the torus

{z ∈ C||z| = 1} is called a Steinhaus variable. A sequence ε = (ε1, ..., εN ) of

independent Steinhaus variables is called a Steinhaus sequence.
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Nonuniform recovery via random sampling BOS

Theorem
Let x ∈ CN be a vector supported on a set S of size s such that sign(xS) forms a

Rademacher or Steinhaus sequence. Let A ∈ Cm×N be a random sampling matrix

associated with a BOS with bound K ≥ 1. If

m ≥ CK2s ln2(6N/ε),

then with probability at least 1− ε, the vector x is the unique minimizer of

min ‖z‖1 subject to Az = Ax.

Here ε ∈ (0, 1) and the constant C ≤ 35.
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Uniform recovery via random sampling BOS

Theorem
Let A ∈ Cm×N be a random sampling matrix associated to a BOS with constant

K ≥ 1. If, for δ ∈ (0, 1),

m ≥ CK2δ−2s ln4(N),

then with probability at least 1−N− ln3(N) the restricted isometry constant δs of
1√
m
A satisfies δs ≤ δ. The constant C > 0 is universal.
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Uniform robust recovery via random sampling BOS

Corollary
Let A ∈ Cm×N be a random sampling matrix associated to a BOS with constant

K ≥ 1. Suppose that

m ≥ CK2s ln4(N)

for a universal constant C > 0. Then with probability at least 1−N− ln3(N)

(a) every s-sparse vector x is exactly recovered from y = Ax by basis pursuit;

(b) every s-sparse vector x is approximately recovered from the inaccurate samples

y = Ax + e, ‖e‖2 ≤
√
mη, as a solution x# of

min ‖z‖1 subject to ‖Az− y‖2 ≤
√
mη

in the sense that

‖x# − x‖p ≤
C1

s1−1/p
σs(x)1 + C2s

1/p−1/2η, 1 ≤ p ≤ 2

where the constant C1, C2 are universal.
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