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What’s kind of matrices satisfying RIP

I Random matrices with

I iid Gaussian entries

I iid Bernoulli entries (+/− 1)

I iid subgaussian entries

I random Fourier ensemble

I random ensemble in bounded orthogonal systems

I In each case, m = O(s lnN), they satisfy RIP with very

high probability (1− e−Cm)..

This is a note from S. Foucart and H. Rauhut, A Mathematical Introduction to

Compressive Sensing, Springer 2013.
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Outline of this Chapter: basic probability

I Basic probability theory

I Moments and tail

I Concentration inequalities
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Basic notion of probability theory

I Probability space

I Random variables

I Expectation and variance

I Sum of independent random variables

4 / 49



Probability space

I A probability space is a triple (Ω,F , P ), Ω: sample space,

F : the set of events, P : the probability measure.

I The sample space is the set of all possible outcomes.

I The collection of events F should be a σ-algebra:

1. ∅ ∈ F ;

2. If E ∈ F , so is Ec ∈ F ;

3. F is closed under countable union, i.e. if Ei ∈ F ,

i = 1, 2, · · · , then ∪∞i=1Ei ∈ F .

I The probability measure P : F → [0, 1] satisfies

1. P (Ω) = 1;

2. If Ei are mutually exclusive (i.e. Ei ∩ Ej = φ), then

P (∪∞i=1Ei) =
∑∞

i=1 P (Ei).
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Examples

1. Bernoulli trial: a trial which has only two outcomes: success or fail. We

represent it as Ω = {1, 0}. The collect of events

F = 2Ω = {φ, {0}, {1}, {0, 1}}. The probability

P ({1}) = p, P ({0}) = 1− p, 0 ≤ p ≤ 1.

If we denote the outcome of a Bernoulli trial by x, i.e. x = 1 or 0, then

P (x) = px(1− p)1−x.

2. Binomial trials: Let us perform Bernoulli trials n times independently. An

outcome has the form (x1, x2, ..., xn), where xi = 0 or 1 is the outcome of the

ith trial. There are 2n outcomes. The sample space

Ω = {(x1, ..., xn)|xi = 0 or 1}. The collection of events F = 2Ω is indeed the

collection of all subsets of Ω. The probability

P ({(x1, ..., xn)}) := p
∑
xi (1− p)n−

∑
xi .
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Property of probability measure

1. P (Ec) = 1− P (E);

2. If E ⊂ F , then P (E) ≤ P (F );

3. If {En, n ≥ 1} is either increasing (i.e. En ⊂ En+1) or

decreasing to E, then

lim
n→∞

P (En) = P (E).
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Independence and conditional probability

I Let A,B ∈ F and P (B) 6= 0. The conditional probability

P (A|B) (the probability of A given B) is defined to be

P (A|B) :=
P (A ∩B)

P (B)
.

I Two events A and B are called independent if

P (A ∩B) = P (A)P (B). In this case P (A|B) = P (A)

and P (B|A) = P (B).
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Random variables

Outline:

I Discrete random variables

I Continuous random variables

I Expectation and variances
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Discrete random variables

I A discrete random variable is a mapping

x : Ω→ {a1, a2, · · · }, denoted by Ωx.

I The random variable x induces a probability on the

discrete set Ωx := {a1, a2, · · · } with probability

P ({ak}) := Px({x = ak}) and with σ-algebra Fx which

is 2Ωx , the collection of all subsets of Ωx. .

I We call the function ak 7→ Px(ak) the probability mass

function of x.

I Once we have (Ωx,Fx, Px), we can just deal with this

probability space if we only concern with x, and forget

the original probability space (Ω,F , P ).
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Binomial random variable

I Let xk be the kth (k = 1, ..., n) outcome of the n independent Bernoulli trials.

Clearly, xk is a random variable.

I Let Sn =
∑n
i=1 xi be the number of successes in n Bernoulli trials. We see

that Sn is also a random variable.

I The sample space that Sn induces is ΩSn = {0, 1, ..., n}.

PSn (Sn = k) =

(
n

k

)
pk(1− p)n−k.

I The binomial distribution models the following uncertainty:

I the number of successes in n independent Bernoulli trials;

I the relative increase or decrease of a stock in a day;
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Poisson random variable

I The Poisson random variable x takes values 0, 1, 2,... with probability

P (x = k) = e−λ
λk

k!
,

where λ > 0 is a parameter.

I The sample space is Ω = {0, 1, 2, ...}. The probability satisfies

P (Ω) =
∞∑
k=0

P (x = k) =
∞∑
k=0

e−λ
λk

k!
= 1.

I The Poisson random process can be used to model the following uncertainties:

I the number of customers visiting a specific counter in a day;
I the number of particles hitting a specific radiation detector in certain

period of time;

I the number of phone calls of a specific phone in a week.

I The parameter λ is different for different cases. It can be estimated by

experiments.
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Continuous Random Variables

I A continuous random variable is a (Borel) measurable mapping from Ω→ R.

This means that x−1([a, b)) ∈ F for any [a, b).

I It induces a probability space (Ωx,Fx, Px) by
I Ωx = x(Ω);
I Fx = {A ⊂ R |x−1(A) ∈ F}

I Px(A) := P (x−1(A)).

I In particular, define

Fx(x) := Px((−∞, x)) := P ({x < x}).

called the (cumulative) distribution function. Its derivative px(x) w.r.t. dx is

called the probability density function:

px(x) =
dFx(x)

dx
.

In other word,

P ({a ≤ x < b}) = Fx(b)− Fx(a) =

∫ b

a
px(x) dx.

I Thus, x can be completely characterized by the density function px on R.
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Gaussian distribution

I The density function of Gaussian distribution is

p(x) :=
1√
2πσ

e−|x−µ|
2/2σ2

, −∞ < x <∞.

I A random variable x with the above probability density

function is called a Gaussian random variable and is

denoted by

x ∼ N(µ, σ).

I The Gaussian distribution is used to model:
I the motion of a big particle (called Brownian particle) in

water;

I the limit of binomial distribution with infinite many

trials.
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I Exponential distribution. The density is

p(x) =

{
λe−λx if x ≥ 0

0 if x < 0.

The exponential distribution is used to model

I the length of a telephone call;

I the length to the next earthquake.

I Laplace distribution The density function is given by

p(x) =
λ

2
e−λ|x|.

I It is used to model some noise in images.

I It is used as a prior in Baysian regression (LASSO).
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Remarks

I The probability mass function which takes discrete values

on R can be viewed as a special case of probability density

function by introducing the notion of delta function.

I The definition of the delta function is∫ ∞
−∞

δ(x− a)f(x) dx = f(a).

I Thus, a discrete random random variable x with value ai

with probability pi has the probability density function

p(x) =
∑
i

piδ(x− ai).∫ b

a

p(x) dx =
∑

a<ai<b

pi.
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Expectation

I Given a random variable x with pdf p(x), we define the

expectation of x by

E(x) =

∫
xp(x) dx.

I If f is a continuous function on R, then f(x) is again a

random variable. Its expectation is denoted by E(f(x)).

We have

E(f(x)) =

∫
f(x)p(x) dx.
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I The kth moment of x is defined to be:

mk := E(|x|k).

I In particular, the first and second moments have special

names:

I mean: µ := E(x)

I variance: Var(x) := E((x− E(x))2).

The variance measures the spread out of values of a

random variable.
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Examples

1. Bernoulli distribution: mean µ = p, variance

σ2 = p(1− p).

2. Binomial distribution Sn: the mean µ = np, variance:

σ2 = np(1− p).

3. Poisson distribution: mean µ = λ, variance σ2 = λ.

4. Normal distribution N(µ, σ): mean µ, variance σ2.

5. Uniform distribution: mean µ = (a+ b)/2, variance

σ2 = (b− a)2/12.
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Joint Probability

I Let x and y be two random variables on (Ω,F , P ). The

joint probability distribution of (x,y) is the measure on

R2 defined by

µ(A) := P ((x,y) ∈ A) for any Borel set A.

The derivative of µ w.r.t. the Lebesgue measure dx dy is

called the joint probability density:

P ((x,y) ∈ A) =

∫
A

p(x,y)(x, y) dx dy.

20 / 49



Independent random variables

I Two random variables x and y are called independent if the events (a < x < b)

and (c < y < d) are independent for any a < b and c < d. If x and y are

independent, then by taking A = (a, b)× (c, d), we can show that the joint

probability∫
(a,b)×(c,d)

p(x,y)(x, y) dx dy = P (a < x < b and c < y < d)

= P (a < x < b)P (c < y < d) =

(∫ b

a
px(x) dx

) (∫ d

c
py(y) dy

)
This yields that

p(x,y)(x, y) = px(x) py(y).

I If x and y are independent, then E[xy] = E[x]E[y].

I The covariance of x and y is defined as

cov[x,y] := E[(x− E[x])(y − E[y])].

Two random variables are called uncorrelated if their covariance is 0.
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Sum of independent random variables

I If x and y are independent, then

Fx+y(z) = P (x + y < z) =

∫ ∞
−∞

dy

∫ z−y

−∞
dx px(x)py(y)

We differentiate this in z and get

px+y(z) =

∫ ∞
−∞

dy px(z − y)py(y) := px ∗ py(z).

I Sum of n independent identical distributed (iid) random variables {xi}ni=1 with

mean µ and variance σ2. Their average is

x̄n :=
1

n
(x1 + · · ·+ xn)

which has mean µ and variance σ2/n:

E[(x̄n − µ)2] = E

( 1

n

n∑
i=1

xi − µ
)2
 = E

( 1

n

n∑
i=1

(xi − µ)

)2


= E

 1

n2

n∑
i=1

n∑
j=1

(xi − µ)(xj − µ)

 = E

[
1

n2

n∑
i=1

(xi − µ)2

]
=
σ2

n
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Limit of sum of ranviables

I Moments and Tails

I Gaussian, Subgaussian, Subexponential distributions

I Law of large numbers, central limit theorem

I Concentration inequalities
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Tails and Moments: Markov inequality

Theorem (Markov’s inequality)

Let x be a random variable. Then

P (|x| ≥ t) ≤ E[|x|]
t

for all t > 0.

Proof. Note that P (|x| ≥ t) = E[I|x|≥t], where

IA(ω) =

{
1 if ω ∈ A
0 otherwise

is called an indicator function supported on A, which satisfies

I{|x|≥t} ≤
|x|
t
.

Thus,

P (|x| ≥ t) = E[I{|x|≥t}] ≤
E[|x|]
t

.
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Remarks.

I For p > 0,

P (|x| ≥ t) = P (|x|p ≥ tp) ≤ E[|x|p]
tp

.

I For p = 2, apply Markov’s inequality to x− µ, we obtain

Chebyshev inequality:

P (|x− µ|2 ≥ t2) ≤ σ2

t2

I For θ > 0,

P (x ≥ t) = P (exp(θx) ≥ exp(θt)) ≤ exp(−θt)E[exp(θx)].
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Law of large numbers

Theorem (Law of large numbers)

Let x1, ...,xn be i.i.d. with mean µ and variance σ2. Then the

sample average x̄n := 1
n
(x1 + · · ·+ xn) converges in

probability to its expected value:

x̄n − µ
P→ 0 as n→∞.

That is, for any ε > 0,

lim
n→∞

P (|x̄n − µ| ≥ ε) = 0.
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Proof.
1. Using iid of xj , the mean and variance of x̄n are: E[x̄n] = µ, while

σ2(x̄n) = E[(x̄n − µ)2] = E

 1

n2

 n∑
j=1

(xj − µ)

2
=

1

n2

n∑
j,k=1

E[(xj − µ)(xk − µ)] =
1

n2

n∑
j=1

E[(xj − µ)2] =
1

n
σ2

2. We apply the Chebyshev’s inequality to x̄n:

P (|x̄n − µ| ≥ ε) = P (|x̄n − µ|2 ≥ ε2) ≤
σ(x̄n)2

ε2
=

σ2

nε2
→ 0 as n→∞.

Remarks.

I The condition on variance can be removed. But we use Chebyshev inequality to

prove this theorem, which uses the assumption of finite variance.

I No convergent rate here. The concentration inequality provides rate estimate,

which needs tail control.
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Tail probability can be controlled by moments

Lemma (Markov)
For p > 0,

P (|x| ≥ t) = P (|x|p ≥ tp) ≤
E[|x|p]

tp
.

Proposition
If x is a random variable satisfying

E[|x|p] ≤ αpβpp/2 for all p ≥ 2,

then

P (|x| ≥ e1/2αu) ≤ βe−u
2/2 for all u ≥

√
2.

1. Use Markov inequality

P (|x| ≥
√
eαu) ≤

E[|x|p]

(
√
eαu)p

≤ β
(
α
√
p

√
eαu

)p
.

2. Choosing p = u2, we get the estimate.
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Moments can be controlled by tail probability

Proposition
The moments of a random variable x can be expressed as

E[|x|p] = p

∫ ∞
0

P (|x| ≥ t)tp−1 dt, p > 0.

Proof.
1. Use Fubini theorem:

E[|x|p] =

∫
Ω
|x|p dP =

∫
Ω

∫ |x|p
0

1 dx dP =

∫
Ω

∫ ∞
0

I{|x|p≥x} dx dP

=

∫ ∞
0

∫
Ω
I{|x|p≥x} dP dx =

∫ ∞
0

P (|x|p ≥ x) dx

= p

∫ ∞
0

P (|x|p ≥ tp)tp−1 dt = p

∫ ∞
0

P (|x| ≥ t)tp−1 dt

2. Here I{|x|p≥x} is a random variable which is 1 as |x|p ≥ x and 0 otherwise.
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Moments can be controlled by tail probability

Proposition
Suppose x is a random variable satisfying

P (|x| ≥ e1/2αu) ≤ βe−u
2/2 for all u > 0,

then for all p > 0,

E[|x|p] ≤ βαp(2e)p/2Γ
(p

2
+ 1
)
.

Proposition
If P (|x| ≥ t) ≤ βe−κt2 for all t > 0, then

E[|x|n] ≤
nβ

2
κ−n/2Γ

(n
2

)
.
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Subgaussian and subexponential distributions

Definition
A random variable x is called subgaussian if there exist

constants β, κ > 0 such that

P (|x| ≥ t) ≤ βe−κt
2

for all t > 0;

It is called subexponential if there exist constants β, κ > 0

such that

P (|x| ≥ t) ≤ βe−κt for all t > 0.

Notice that x is subgaussian if and only if x2 is subexponential.
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Subgaussian

Proposition
A random variable is subgaussian if and only if ∃ c, C > 0 such that

E[exp(cx2)] ≤ C.

Proof. (⇒)

1. Estimating moments from tail, we get E[x2n] ≤ βκ−nn!.

2. Expand exponential function

E[exp(cx2)] = 1 +
∞∑
n=1

cnE[x2n]

n!
≤ 1 + β

∞∑
n=1

cnκ−nn!

n!
≤ C.

(⇐) From Markov inequality

P (|x| ≥ t) = P (exp(cx2) ≥ ect
2
) ≤ E[exp(cx2)]e−ct

2
≤ Ce−ct

2
.
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Subgaussian with mean 0

Proposition
A random variable x is subgaussian with Ex = 0 if and only if ∃ c > 0 such that

E[exp(θx)] ≤ exp(cθ2) for all θ ∈ R.

(⇐)

1. Apply Markov inequality

P (x ≥ t) = P (exp(θx) ≥ exp(θt)) ≤ E[exp(θx)]e−θt ≤ ecθ
2−θt.

Optimal θ yields P (x ≥ t) ≤ e−t2/(4c).

2. Repeating this for −x, we also get P (−x ≥ t) ≤ e−t2/(4c). Thus,

P (|x| ≥ t) = P (x ≥ t) + P (−x ≥ t) ≤ 2e−t
2/(4c).

3. To show E[x] = 0, we use

1 + θE[x] ≤ E[exp(θx)] ≤ ecθ
2

Take θ → 0, we obtain E[x] = 0.
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(⇒)

1. It is enough to prove the statement for θ ≥ 0. For θ < 0, we replace x by −x.

2. For θ < θ0 small, expand exp, use E[x] = 0, moment estimate via tail and

Stirling formula:

E[exp(θx)] = 1 +
∞∑
n=2

θnE[xn]

n!
≤ 1 + β

∞∑
n=2

θnCnκ−n/2nn/2

n!

≤ 1 + θ2 β(Ce)2

√
2πκ

∞∑
n=0

(
Ceθ0√
κ

)n
≤ 1 + θ2 β(Ce)2

√
2πκ

1

1− Ceθ0√
κ

= 1 + c1θ
2 ≤ exp(c1θ

2).

Here, θ0 =
√
κ/(2Ce) and satisfies Ceθ0κ−1/2 < 1.

3. For θ > θ0, we aim at proving E[exp(θx− c2θ2)] ≤ 1. Here, c2 = 1/(4c).

E[exp(θx− c2θ2)] = E[exp(−q2 +
x2

4c2
)] ≤ E[exp(

x2

4c2
)] ≤ C.

4. Define ρ = ln(C)θ−2
0 yields

E[exp(θx)] ≤ Cec2θ
2

= Ce(−ρ+(ρ+c2))θ2 ≤ Ce−ρθ
2
0 e(ρ+c2)θ2 ≤ e(ρ+c2)θ2

Setting c3 = max(c1, c2 + ρ). This completes the proof.
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Bounded random variable

Corollary
If a random variable x has mean 0 and |x| ≤ B almost surely, then

E[exp(θx)] ≤ exp(B2θ2/2)

Proof.

1. We write x = (−B)t+ (1− t)B, where t = (B − x)/2B is a random variable,

0 ≤ t ≤ 1 and E[t] = 1/2..

2. By Jensen inequality: eθx ≤ te−Bθ + (1− t)eBθ, taking expectation,

E[exp(θx)] ≤
1

2
e−Bθ +

1

2
eBθ =

∞∑
k=0

(θB)2n

(2n)!
≤
∞∑
k=0

(θB)2n

(2nn!
= exp(B2θ2/2).
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Exponential decay tails, cumulant function

lnE[exp(θx)]

In the case when the tail decays fast, the corresponding

moment information can be grouped into exp[θx]. The

function Cx(θ) := lnE[exp(θx)] is called the cumulant

function of x.
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Example of Cx

Let g ∼ N(0, 1). Then

E[exp(ag2 + θg)] =
1

√
1− 2a

exp

(
θ2

2(1− 2a)

)
, for a < 1/2, θ ∈ R.

This is from

E[exp(ag2 + θg)] =
1
√

2π

∫ ∞
−∞

exp(ax2 + θx) exp(−x2/2) dx

In particular,

E[exp(θg)] = exp

(
θ2

2

)
.

On the other hand,

E[exp(θg)] =
∞∑
j=0

θjE[gj ]

j!
=
∞∑
n=0

θ2nE[g2n]

(2n)!

By comparing the two expansions for E[exp(θx)], we obtain

E[g2n+1] = 0, E[g2n] =
(2n)!

2nn!
, n = 0, 1, ...

Cg(θ) := lnE[exp(θg)] =
θ2

2
.
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Examples of Cx

Let the random variable x have the pdf χ[−B,B]/(2B). Then

E[exp(θx)] =
1

2B

∫ B

−B
exp(θx) dx =

eBθ − e−Bθ

2Bθ
=
∞∑
n=0

(Bθ)2n

(2n+ 1)!
.

On the other hand, E[exp(θx)] =
∑∞
k=0

θkE[xk]
k!

. By comparing these two

expansions, we obtain

E[x2n+1] = 0, E[x2n] =
B2n

2n+ 1
, n = 0, 1, ...

Cx(θ) = ln
(
eBθ − e−Bθ

)
− ln θ + C.
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Examples of Cx

The pdf of Rademacher distribution is pε(x) = (δ(x+ 1) + δ(x− 1))/2.

E[exp(θε)] =
1

2

∫
eθx(δ(x+ 1) + δ(x− 1)) dx =

eθ + e−θ

2
=
∞∑
n=0

θ2n

(2n)!
.

Thus, we get

E[ε2n+1] = 0, E[ε2n] = 1, n = 1, 2, ...

Cε(θ) = ln(eθ + e−θ) + C.
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Concentration inequalities

Motivations: In the law of large numbers, if the distribution function satisfies certain

growth condition, e.g. decay exponentially fast, or even finite support, then we have

sharp estimate how fast x̄n tends to µ. This is the large deviation theory below. The

rate is controlled by the cumulant function Cx(θ) := lnE[exp(θx)].

Theorem (Cremér’s theorem)
Let x1, ...,xn be independent random variables with cumulant-generating function

Cx` . Then for t > 0,

P

(
1

n

n∑
`=1

x` ≥ x
)
≤ exp(−nI(x)),

I(x) := sup
θ>0

[
θx−

1

n

n∑
`=1

Cx` (θ)

]
.

40 / 49



Proof.
1. By Markov’s inequality and independence of x`,

P (x̄n ≥ x) =P (exp(θx̄n) ≥ exp(θx)) ≤ e−θxE[exp(θx̄n)] = e−θxE

[
exp

(
n∑
`=1

θx`

n

)]

= e−θxE

[
n∏
`=1

exp

(
θx`

n

)]
= e−θx

n∏
`=1

E

[
exp

(
θx`

n

)]

= e−θx exp

(
n∑
`=1

lnE

[
exp

(
θx`

n

)])
= exp

(
−θx+

n∑
`=1

Cx`

(
θ

n

))

= exp

(
−n
(
θ′x−

1

n

n∑
`=1

Cx` (θ′)

))
≤ exp (−nI(x))

Here,

I(x) = sup
θ>0

[
θx−

1

n

n∑
`=1

Cx` (θ)

]
.

Remark. If each Cx` is subgaussian with 0 mean, then Cx` (θ) ≤ cθ2. This leads to

I(x) ≥ x2/4c
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Hoeffding inequality

Theorem (Hoeffding inequality)

Let x1, ...,xn be independent random variables with mean 0

and x` ∈ [−B,B] almost surely for ` = 1, ..., n. Then

P (x̄n > x) ≤ exp(−nI(x)).

Here,

I(x) :=
x2

1
2n

∑n
i=1(2B)2

=
x2

2B2
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Proof.
1. Let Sn =

∑n
`=1 x`. Use Markov’s inequality

P (Sn > t) ≤ e−tθE[exp(θSn)] = e−tθE[
n∏
`=1

exp(θx`)] = e−tθ
n∏
`=1

E[exp(θx`)]

≤ e−tθ
n∏
`=1

exp

(
B2

2
θ2

)
= exp

(
−tθ +

n∑
`=1

(
B2

2
θ2

))
.

2. Let write t = nx, taking convex conjugate:

I(x) := sup
θ

(
xθ −

1

2
B2θ2

)
=

x2

2B2
.

we get

P (Sn > nx) ≤ exp(−n(xθ −
B2

2
θ2)) ≤ exp(−nI(x)).
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Bernstein’s inequality

Theorem (Bernstein’s inequality)

Let x1, ...,xn be independent random variables with mean 0

and variance σ2
` , and x` ∈ [−B,B] almost surely for

` = 1, ..., n. Then

P (
n∑
`=1

x` > t) ≤ exp

(
− t2/2

σ2 +Bt/3

)
,

P (|
n∑
`=1

x`| > t) ≤ 2 exp

(
− t2/2

σ2 +Bt/3

)
,

where σ2 =
∑n

`=1 σ
2
` .
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Remark.

In Hoeffding’s inequality, we do not use the variance information. The concentration

estimation is

P (x̄n > ε) ≤ exp

(
−n

ε2

2B2

)
.

In Bernstein inequality, we use the variance information. Let σ̄2 := 1
n

∑n
`=1 σ

2
` . The

Bernstein inequality reads

P (x̄n > ε) ≤ exp

(
−n

ε2

σ̄2 + Bε
3

)

Comparing the denominators, Bernstein’s inequality is sharper, provided σ̄ < B.
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Proof.
1. For a random variable x` which has mean 0, variance σ2

` and |x| ≤ B almost

surely, its moment generating function E[exp(θx`)] satisfies

E[exp(θx`)] = E

[ ∞∑
k=0

θkxk`
k!

]
≤ E

[
1 +

∞∑
k=2

θk|x`|2Bk−2

k!

]

≤ 1 +
θ2σ2

`

2

∞∑
k=2

2(θB)k−2

k!
= 1 +

θ2σ2
`

2
F`(θ) ≤ exp(θ2σ2

`F`(θ)/2).

Here,

F`(θ) =
∞∑
k=2

2(θB)k−2

k!
≤
∞∑
k=2

(θB)k−2

3k−2
=

1

1−Bθ/3
:=

1

1−Rθ

where R := B/3. We require 0 ≤ θ < 1/R.

2. Let Sn =
∑n
`=1 x`. Using Cramer theorem,

P (Sn > t) ≤ e−tθ
n∏
`=1

E[exp(θx`)] ≤ e−θt exp

(
n∑
`=1

θ2σ2
`F`(θ)/2

)

≤ exp

(
−θt+

σ2

2

θ2

1−Rθ

)
Here, σ2 =

∑n
`=1 σ`.
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Proof (Cont.)
3 Choose θ = t/(σ2 +Rt), which satisfies θ < 1/R. We then get

P (Sn > t) = exp

(
t2σ2

2(σ2 +Rt)2

1

1− Rt
σ2+Rt

−
t2

σ2 +Rt

)
≤ exp

(
−

t2

2(σ2 +Rt)

)
.

(0.1)

4 Replacing x` by −x` yields the same estimate. We then get the estimate for

P (|Sn| > t).
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Bernstein inequality for subexponential r.v.

We can extend Bernstein’s inequality to random variables

without bound, but decay exponentially fast. That is, those

subexponential random variables.

Corollary

Let x1, ...,xn be independent mean 0 subexponential random

variables, i.e. P (|x`| ≥ t) ≤ βe−κt for some constant β, κ > 0

for all t > 0. Then

P (|
n∑
`=1

x`| ≥ t) ≤ 2 exp

(
− (κt)2/2

2βn+ κt

)
.
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Proof.
1. For subexponential random variable x, for k ≥ 2,

E[|x|k] = k

∫ ∞
0

P (|x| ≥ t)tk−1 dt ≤ βk
∫ ∞

0
e−κttk−1 dt

= βkκ−k
∫ ∞

0
e−uuk−1 du = βκ−kk!.

2. Using this estimate and E[x`] = 0, we get

E[exp(θx`)] = E

[ ∞∑
k=0

θkxk`
k!

]
≤ 1 +

∞∑
k=2

θkβκ−kk!

k!

= 1 + β
θ2κ−2

1− θκ−1
≤ exp

(
β

θ2κ−2

1− θκ−1

)
.

3. Using Cramer’s inequality, we have

P (Sn ≥ t) ≤ exp

(
−θt+

nβ

κ2

θ2

1− κ−1θ

)
Comparing this formula and (0.1) with R = 1/κ, σ2 = 2nβκ−2, we get

P (Sn ≥ t) ≤ exp

(
−

t2

2(σ2 +Rt)

)
= exp

(
−

t2

2(2nβκ−2 + κ−1t)

)
= exp

(
−

(κt)2/2

2nβ + κt

)
.
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