Chapter 5. Mutual Incoherence

I-Liang Chern

October 12, 2016

Goal of this chapter.

- In compressive sensing, the analysis of recovery algorithms usually involves a quantity that measures the suitability of the measurement matrix.
- The coherence is a very simple such measure of quality. In general, the smaller the coherence, the better the recovery algorithms perform.
- Goal: Introduce the concept of coherence and give sufficient conditions expressed in terms of the coherence that guarantee the success of orthogonal matching pursuit, basis pursuit, and thresholding algorithms. ${ }^{1}$

[^0]
What's kind of measurement matrix we like

- Let $\mathbf{A}=\left[a_{1}, \cdots, a_{N}\right], N$ column vectors in \mathbb{C}^{m}. We normalize them by $\left\|a_{j}\right\|_{2}=1$. Let $A^{*}=\left[b_{1}, \cdots, b_{m}\right]$, row vectors in C^{N}.
- Usually, $m \ll N$, this means $\left\{a_{1}, \cdots, a_{N}\right\}$ a redundant set in \mathbb{C}^{m}, while $\left\{b_{1}, \cdots, b_{m}\right\} \subset \mathbb{C}^{N}$ will not be enough to span \mathbb{C}^{N}.
- We want $\left\{b_{i}\right\}$ less correlated, the best case is that they are orthogonal.
- We want each a_{j} equally important in representing \mathbf{y}. The best is that they are equiangular. This means that

$$
\left|\left\langle a_{i}, a_{j}\right\rangle\right|=c \text { for all } i \neq j
$$

Motivation to define incoherence

Theorem

Given $A \in \mathbb{C}^{m \times N}$, the following properties are equivalent:
(a) Every s-sparse vector $x \in \mathbb{C}^{N}$ is the unique s-sparse solution of $A z=A x$, that is, if $A x=A z$ and $x, z \in \Sigma_{s}$, then $x=z$.
(b) The null space ker A does not contain any $2 s$-sparse vector other than the zero vector, that is,

$$
\operatorname{ker} A \cap \Sigma_{2 s}=\{0\} .
$$

(c) For every $S \subset[N]$ with $|S| \leq 2 s$, the submatrix A_{S} is injective as a map from \mathbb{C}^{S} to \mathbb{C}^{m}.
(d) Every set of $2 s$ columns of A is linearly independent.

Motivation to define incoherence

(e) $A_{S}^{*} A_{S}: \mathbb{C}^{S} \rightarrow \mathbb{C}^{S}$ is invertible;
(f) That is, the matrix $\left(\left\langle a_{i}, a_{j}\right\rangle\right)_{i, j \in S}$ is invertible;

Measure the coherence

Let $\mathbf{A}=\left[a_{1}, \ldots, a_{N}\right]$ be an $m \times N$ matrix with $\left\|a_{j}\right\|_{2}=1 \forall j$.
Definition

1. Coherence of \mathbf{A} is defined to be

$$
\mu(\mathbf{A})=\max _{i \neq j}\left|\left\langle a_{i}, a_{j}\right\rangle\right| .
$$

2. The ℓ_{1}-coherence function: for $1 \leq s \leq N-1$

$$
\mu_{1}(s):=\max _{i \in[N]} \max \left\{\sum_{j \in S}\left|\left\langle a_{i}, a_{j}\right\rangle\right|, S \subset[N],|S|=s, i \notin S\right\}
$$

Question: How small of μ or $\mu_{1}(s)$ leads to $(\mathrm{P} 1) \Leftrightarrow(\mathrm{P} 0)$?

Simple properties

- $\mu \leq 1$
- $\mu \leq \mu_{1}(s) \leq s \mu$
- $\max \left\{\mu_{1}(s), \mu_{1}(t)\right\} \leq \mu_{1}(s+t) \leq \mu_{1}(s)+\mu_{1}(t)$

Proof.

1. Because $\left|\left\langle a_{i}, a_{j}\right\rangle\right| \leq\left\|a_{i}\right\|\left\|a_{j}\right\|=1$
2. By definition $\mu(A)=\mu_{1}(1) \leq \mu_{1}(s)$ for $s \geq 1$.

$$
\mu_{1}(s) \leq \max _{i \in[N]|S|=s, i \notin S} \max _{j \in S}\left|\left\langle a_{i}, a_{j}\right\rangle\right| \leq s \mu
$$

3.

$$
\begin{aligned}
\mu_{1}(s+t) & =\max _{i} \max _{|S \cup T|=s+t, i \notin S \cup T} \sum_{j \in S \cup T}\left|\left\langle a_{i}, a_{j}\right\rangle\right| \\
& =\max _{i}\left(\max _{|S|=s, i \notin S} \sum_{j \in S}+\max _{|T|=t, i \notin T} \sum_{j \in T}\right)\left|\left\langle a_{i}, a_{j}\right\rangle\right| \\
& \leq \max _{i} \max _{|S|=s, i \notin S} \sum_{j \in S}\left|\left\langle a_{i}, a_{j}\right\rangle\right|+\max _{i} \max _{|T|=t, i \notin T} \sum_{j \in T}\left|\left\langle a_{i}, a_{j}\right\rangle\right|=\mu_{1}(s)+\mu_{1}(t)
\end{aligned}
$$

Theorem

We have: for all s-sparse vector x

$$
\left(1-\mu_{1}(s-1)\right)\|x\|_{2}^{2} \leq\|A x\|_{2}^{2} \leq\left(1+\mu_{1}(s-1)\right)\|x\|_{2}^{2} .
$$

Equivalently, the spectrum

$$
\sigma\left(A_{S}^{*} A_{S}\right) \subset\left[1-\mu_{1}(s-1), 1+\mu_{1}(s-1)\right]
$$

for all S with $|S| \leq s$. In particular, $A_{S}^{*} A_{S}$ is invertible for all $|S| \leq s$ if

$$
\mu_{1}(s-1)<1 .
$$

Proof

1. For any x with support in S, we have

$$
\|A x\|^{2}=\left\langle A_{S} x_{S}, A_{S} x_{S}\right\rangle=\left\langle A_{S}^{*} A_{S} x_{S}, x_{S}\right\rangle
$$

which is bounded above and below by $\lambda_{\max }$ and $\lambda_{\min }$ of $A_{S}^{*} A_{S}$.
2. The diagonal entries of $A_{S}^{*} A_{S}$ are $\left\|a_{j}\right\|^{2}=1$. By

Gershgorin's disk theorem, the eigenvalues of $A_{S}^{*} A_{S}$ lie in the union of disks centered at 1 with radii

$$
r_{j}=\sum_{\ell \in S, \ell \neq j}\left|\left\langle a_{j}, a_{\ell}\right\rangle\right| \leq \mu_{1}(s-1), \quad j \in S
$$

Since all eigenvalues are real $\left(A_{S}^{*} A_{S}\right.$ self-adjoint), they lie in $\left[1-\mu_{1}(s-1), 1+\mu_{1}(s-1)\right]$.

Corollary

If $\mu_{1}(s)+\mu_{1}(s-1)<1$, then for any S with $|S| \leq 2 s$, the matrix $A_{S}^{*} A_{S}$ is invertible and A_{S} is injective. In particular, the conclusion holds if

$$
\mu<\frac{1}{2 s-1} .
$$

Proof.

1. $\mu_{1}(2 s-1)<\mu_{1}(s)+\mu_{1}(s-1)<1$. Thus, $A_{S}^{*} A_{S}$ is invertible for S with $|S| \leq 2 s$.
2. $\mu_{1}(s)+\mu_{1}(s-1) \leq(2 s-1) \mu<1$. Thus, if $\mu<1 /(2 s-1)$, then $\mu_{1}(s)+\mu_{1}(s-1)<1$.

Theorem

If $\mu_{1}(s)+\mu_{1}(s-1)<1$, then every s-sparse vector x can be recovered from the measurement $y=A x$ via basis pursuit.

Proof.

1. We want to show $\left\|v_{S}\right\|_{1}<\left\|v_{\bar{S}}\right\|_{1}$ for $v \in N(A)$.
2. From $A v=0$, we have $\sum_{j} a_{j} v_{j}=0$. Taking inner product with a_{i}, with $i \in S$, we get

$$
\begin{gathered}
v_{i}\left\langle a_{i}, a_{i}\right\rangle=-\sum_{j \neq i} v_{j}\left\langle a_{j}, a_{i}\right\rangle \\
\left|v_{i}\right| \leq \sum_{\ell \in \bar{S}}\left|v_{\ell}\left\|\left\langle a_{\ell}, a_{i}\right\rangle\left|+\sum_{j \in S, j \neq i}\right| v_{j}\right\|\left\langle a_{j}, a_{i}\right\rangle\right| \\
\left\|v_{S}\right\|_{1} \leq \sum_{\ell \in \bar{S}}\left|v_{\ell}\right| \sum_{i \in S}\left|\left\langle a_{\ell}, a_{i}\right\rangle\right|+\sum_{j \in S}\left|v_{j}\right| \sum_{i \in S, i \neq j}\left|\left\langle a_{j}, a_{i}\right\rangle\right| \\
\leq \mu_{1}(s)\left\|v_{\bar{S}}\right\|_{1}+\mu_{1}(s-1)\left\|v_{S}\right\|_{1}
\end{gathered}
$$

3. $\mu_{1}(s)\left\|v_{S}\right\|_{1}<\left(1-\mu_{1}(s-1)\right)\left\|v_{S}\right\|_{1} \leq \mu_{1}(s)\left\|v_{\bar{S}}\right\|_{1}$.

Theorem

If $\mu_{1}(s)+\mu_{1}(s-1)<1$, then every s-sparse vector x can be recovered from the measurement $y=A x$ after at most s iterations of orthogonal matching pursuit.

1. We want to show that for any $S \subset[N]$ with $|S| \leq s$, $\max _{j \in S}\left|\left\langle r, a_{j}\right\rangle\right|>\max _{\ell \in \bar{S}}\left|\left\langle r, a_{\ell}\right\rangle\right|$ for all $r=\sum_{i \in S} r_{i} a_{i}$.
2. Let $\left|r_{k}\right|=\max _{i \in S}\left|r_{i}\right|>0$. For $\ell \in \bar{S}$,

$$
\begin{gathered}
\left|\left\langle r, a_{\ell}\right\rangle\right|=\left|\left\langle\sum_{i \in S} r_{i} a_{i}, a_{\ell}\right\rangle\right| \leq \sum_{i \in S}\left|r_{i}\right|\left|\left\langle a_{i}, a_{\ell}\right\rangle\right| \leq\left|r_{k}\right| \mu_{1}(s) . \\
\left|\left\langle r, a_{k}\right\rangle\right| \geq\left|r_{k}\right|\left|\left\langle a_{k}, a_{k}\right\rangle\right|-\sum_{i \in S, i \neq k}\left|r_{i}\right|\left|\left\langle a_{i}, a_{k}\right\rangle\right| \geq\left|r_{k}\right|\left(1-\mu_{1}(s-1)\right)
\end{gathered}
$$

3. If $1-\mu_{1}(s-1)>\mu_{1}(s)$, then $\left|\left\langle r, a_{k}\right\rangle\right|>\left|\left\langle r, a_{\ell}\right\rangle\right|$ for $\ell \in \bar{S}$.
4. A_{S} is injective from $\mu_{1}(s)+\mu_{1}(s-1)<1$ (Corollary).

Theorem
Suppose supp $x=S$ and $|S|=s$. If

$$
\mu_{1}(s)+\mu_{1}(s-1)<\frac{\min _{i \in S}\left|x_{i}\right|}{\max _{i \in S}\left|x_{i}\right|}
$$

then x can be recovered from the measurement $y=A x$ via basic thresholding.

Theorem
If

$$
2 \mu_{1}(s)+\mu_{1}(s-1)<1
$$

then every s-sparse vector x is exactly recovered from the measurement vector $y=A x$ after at most s iterations of hard thresholding pursuit.

Matrices with small coherence: equiangular tight

 frame
Proposition

Given $\left\{a_{1}, \ldots, a_{N}\right\}$ in \mathbb{C}^{m}, the following three are equivalent (a) $\exists \lambda>0$ such that for any $x \in \mathbb{C}^{m}, x=\lambda \sum_{j=1}^{N}\left\langle x, a_{j}\right\rangle a_{j}$
(b) $A A^{*}=\frac{1}{\lambda} l d_{m}$ for some $\lambda>0$
(c) For any $x \in \mathbb{C}^{m},\|x\|_{2}^{2}=\lambda \sum_{j=1}^{N}\left|\left\langle x, a_{j}\right\rangle\right|^{2}$.

Remark.

- Such $\left\{a_{1}, \ldots, a_{N}\right\}$ is called a tight frame.
- The ideal measurement matrix should be an equiangular tight frame.

Proof.

1. $(\mathrm{a}) \Leftrightarrow(\mathrm{b}):$ for any $x \in \mathbb{C}^{m}$,

$$
A A^{*} x=\sum_{j} a_{j} a_{j}^{*} x=\sum_{j}\left\langle x, a_{j}\right\rangle a_{j}=\frac{1}{\lambda} x
$$

2. $(\mathrm{a}) \Rightarrow(\mathrm{c})$:

$$
\langle x, x\rangle=\left\langle\lambda \sum_{j}\left\langle x, a_{j}\right\rangle a_{j}, x\right\rangle=\lambda \sum_{j}\left|\left\langle x, a_{j}\right\rangle\right|^{2}
$$

3. $(\mathrm{c}) \Rightarrow(\mathrm{a})$: Use polarization identity
$\langle x, y\rangle=\frac{1}{4}\left[\|x+y\|^{2}-\|x-y\|^{2}+i\|x+i y\|^{2}-i\|x-i y\|^{2}\right]$
we can obtain

$$
\langle x, y\rangle=\lambda \sum_{j}\left\langle x, a_{j}\right\rangle\left\langle a_{j}, y\right\rangle=\left\langle\lambda \sum_{j}\left\langle x, a_{j}\right\rangle a_{j}, y\right\rangle .
$$

Equiangular tight frame

Definition

A family of normalized vectors $\left\{a_{1}, \ldots, a_{N}\right\}$ is called equiangular if

$$
\left|\left\langle a_{i}, a_{j}\right\rangle\right|=c \text { for all } i \neq j
$$

Examples

- In \mathbb{R}^{2}, let $a_{1}=e_{1}, a_{2}=(-1, \sqrt{3}) / 2, a_{3}=(-1,-\sqrt{3}) / 2$ form an ETF.
- The windowed Fourier basis (Garbor) forms an ETF.
- Splines
- Wavelets, Framelets

Matrices with small coherence

Theorem

- Let A be $m \times N$ matrix with normalized column vectors. Then

$$
\mu_{1}(s) \geq s \sqrt{\frac{N-m}{m(N-1)}} \quad \text { whenever } s<\sqrt{N-1}
$$

The equality holds $\Leftrightarrow\left\{a_{1}, \ldots, a_{N}\right\}$ are equiangular tight frame.

- For equiangular system $\left\{a_{1}, \ldots, a_{N}\right\}$ in \mathbb{C}^{m}, it holds

$$
N \leq m^{2}
$$

The equality holds $\Leftrightarrow\left\{a_{1}, \ldots, a_{N}\right\}$ is also a tight frame.

Minimal number of measurements

For the matrices with smallest coherence: then

- $N=m^{2}$
- $\mu_{1}(s)=s \sqrt{\frac{N-m}{m(N-1)}} \sim s \frac{c}{\sqrt{m}}$
- The condition $\mu_{1}(s)+\mu_{1}(s-1)<1$ gives

$$
(2 s-1) \frac{c}{\sqrt{m}}<1
$$

- This requires $m \geq C s^{2}$.
- We will see later that exact recovery can be obtained for

$$
m \geq C \delta^{-2} s \ln (e N s)
$$

with $\delta_{s} \leq \delta$, where δ_{s} is another "coherence" measurement, called restrict isometry property.

[^0]: ${ }^{1}$ This is a note from S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing, Springer 2013.

