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Goal of this chapter.

I In compressive sensing, the analysis of recovery

algorithms usually involves a quantity that measures the

suitability of the measurement matrix.

I The coherence is a very simple such measure of quality.

In general, the smaller the coherence, the better the

recovery algorithms perform.

I Goal: Introduce the concept of coherence and give

sufficient conditions expressed in terms of the coherence

that guarantee the success of orthogonal matching

pursuit, basis pursuit, and thresholding algorithms. 1

1This is a note from S. Foucart and H. Rauhut, A Mathematical Introduction to

Compressive Sensing, Springer 2013.
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What’s kind of measurement matrix we like

I Let A = [a1, · · · , aN ], N column vectors in Cm. We

normalize them by ‖aj‖2 = 1. Let A∗ = [b1, · · · , bm], row

vectors in CN .

I Usually, m << N , this means {a1, · · · , aN} a redundant

set in Cm, while {b1, · · · , bm} ⊂ CN will not be enough

to span CN .

I We want {bi} less correlated, the best case is that they

are orthogonal.

I We want each aj equally important in representing y.

The best is that they are equiangular. This means that

|〈ai, aj〉| = c for all i 6= j.
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Motivation to define incoherence

Theorem
Given A ∈ Cm×N , the following properties are equivalent:

(a) Every s-sparse vector x ∈ CN is the unique s-sparse

solution of Az = Ax, that is, if Ax = Az and x, z ∈ Σs,

then x = z.

(b) The null space kerA does not contain any 2s-sparse

vector other than the zero vector,that is,

kerA ∩ Σ2s = {0}.
(c) For every S ⊂ [N ] with |S| ≤ 2s, the submatrix AS is

injective as a map from CS to Cm.

(d) Every set of 2s columns of A is linearly independent.
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Motivation to define incoherence

(e) A∗SAS : CS → CS is invertible;

(f) That is, the matrix (〈ai, aj〉)i,j∈S is invertible;
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Measure the coherence

Let A = [a1, ..., aN ] be an m×N matrix with ‖aj‖2 = 1 ∀j.

Definition

1. Coherence of A is defined to be

µ(A) = max
i 6=j
|〈ai, aj〉|.

2. The `1-coherence function: for 1 ≤ s ≤ N − 1

µ1(s) := max
i∈[N ]

max{
∑
j∈S

|〈ai, aj〉|, S ⊂ [N ], |S| = s, i 6∈ S}

Question: How small of µ or µ1(s) leads to (P1) ⇔ (P0)?
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Simple properties

I µ ≤ 1

I µ ≤ µ1(s) ≤ sµ

I max{µ1(s), µ1(t)} ≤ µ1(s+ t) ≤ µ1(s) + µ1(t)
Proof.

1. Because |〈ai, aj〉| ≤ ‖ai‖‖aj‖ = 1

2. By definition µ(A) = µ1(1) ≤ µ1(s) for s ≥ 1.

µ1(s) ≤ max
i∈[N ]

max
|S|=s,i 6∈S

∑
j∈S

|〈ai, aj〉| ≤ sµ

3.

µ1(s+ t) = max
i

max
|S∪T |=s+t,i 6∈S∪T

∑
j∈S∪T

|〈ai, aj〉|

= max
i

 max
|S|=s,i 6∈S

∑
j∈S

+ max
|T |=t,i 6∈T

∑
j∈T

 |〈ai, aj〉|
≤ max

i
max

|S|=s,i 6∈S

∑
j∈S

|〈ai, aj〉|+ max
i

max
|T |=t,i 6∈T

∑
j∈T

|〈ai, aj〉| = µ1(s) + µ1(t)
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Theorem
We have: for all s-sparse vector x

(1− µ1(s− 1)) ‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + µ1(s− 1)) ‖x‖2
2.

Equivalently, the spectrum

σ(A∗SAS) ⊂ [1− µ1(s− 1), 1 + µ1(s− 1)]

for all S with |S| ≤ s. In particular, A∗SAS is invertible for all

|S| ≤ s if

µ1(s− 1) < 1.
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Proof

1. For any x with support in S, we have

‖Ax‖2 = 〈ASxS, ASxS〉 = 〈A∗SASxS, xS〉,

which is bounded above and below by λmax and λmin of

A∗SAS.

2. The diagonal entries of A∗SAS are ‖aj‖2 = 1. By

Gershgorin’s disk theorem, the eigenvalues of A∗SAS lie in

the union of disks centered at 1 with radii

rj =
∑

`∈S, 6̀=j

|〈aj, a`〉| ≤ µ1(s− 1), j ∈ S.

Since all eigenvalues are real (A∗SAS self-adjoint), they lie

in [1− µ1(s− 1), 1 + µ1(s− 1)].
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Corollary

If µ1(s) + µ1(s− 1) < 1, then for any S with |S| ≤ 2s, the

matrix A∗SAS is invertible and AS is injective. In particular,

the conclusion holds if

µ <
1

2s− 1
.

Proof.

1. µ1(2s− 1) < µ1(s) + µ1(s− 1) < 1. Thus, A∗SAS is

invertible for S with |S| ≤ 2s.

2. µ1(s) + µ1(s− 1) ≤ (2s− 1)µ < 1. Thus, if

µ < 1/(2s− 1), then µ1(s) + µ1(s− 1) < 1.
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Theorem
If µ1(s) + µ1(s− 1) < 1, then every s-sparse vector x can be

recovered from the measurement y = Ax via basis pursuit.
Proof.

1. We want to show ‖vS‖1 < ‖vS̄‖1 for v ∈ N(A).

2. From Av = 0, we have
∑

j ajvj = 0. Taking inner product with ai, with i ∈ S,

we get

vi〈ai, ai〉 = −
∑
j 6=i

vj〈aj , ai〉

|vi| ≤
∑
`∈S̄

|v`||〈a`, ai〉|+
∑

j∈S,j 6=i

|vj ||〈aj , ai〉|

‖vS‖1 ≤
∑
`∈S̄

|v`|
∑
i∈S

|〈a`, ai〉|+
∑
j∈S

|vj |
∑

i∈S,i 6=j

|〈aj , ai〉|

≤ µ1(s)‖vS̄‖1 + µ1(s− 1)‖vS‖1

3. µ1(s)‖vS‖1 < (1− µ1(s− 1))‖vS‖1 ≤ µ1(s)‖vS̄‖1.
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Theorem
If µ1(s) + µ1(s− 1) < 1, then every s-sparse vector x can be

recovered from the measurement y = Ax after at most s

iterations of orthogonal matching pursuit.

1. We want to show that for any S ⊂ [N ] with |S| ≤ s,

maxj∈S |〈r, aj〉| > max`∈S̄ |〈r, a`〉| for all r =
∑

i∈S riai.

2. Let |rk| = maxi∈S |ri| > 0. For ` ∈ S̄,

|〈r, a`〉| =

∣∣∣∣∣∣〈
∑
i∈S

riai, a`〉

∣∣∣∣∣∣ ≤
∑
i∈S

|ri||〈ai, a`〉| ≤ |rk|µ1(s).

|〈r, ak〉| ≥ |rk||〈ak, ak〉| −
∑

i∈S,i 6=k

|ri||〈ai, ak〉| ≥ |rk|(1− µ1(s− 1))

3. If 1− µ1(s− 1) > µ1(s), then |〈r, ak〉| > |〈r, a`〉| for ` ∈ S̄.

4. AS is injective from µ1(s) + µ1(s− 1) < 1 (Corollary).
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Theorem
Suppose suppx = S and |S| = s. If

µ1(s) + µ1(s− 1) <
mini∈S |xi|
maxi∈S |xi|

then x can be recovered from the measurement y = Ax via

basic thresholding.

Theorem
If

2µ1(s) + µ1(s− 1) < 1,

then every s-sparse vector x is exactly recovered from the

measurement vector y = Ax after at most s iterations of hard

thresholding pursuit.
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Matrices with small coherence: equiangular tight

frame

Proposition

Given {a1, ..., aN} in Cm, the following three are equivalent

(a) ∃λ > 0 such that for any x ∈ Cm, x = λ
∑N

j=1〈x, aj〉aj
(b) AA∗ = 1

λ
Idm for some λ > 0

(c) For any x ∈ Cm, ‖x‖2
2 = λ

∑N
j=1 |〈x, aj〉|2.

Remark.

I Such {a1, ..., aN} is called a tight frame.

I The ideal measurement matrix should be an equiangular

tight frame.
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Proof.

1. (a)⇔(b): for any x ∈ Cm,

AA∗x =
∑
j

aja
∗
jx =

∑
j

〈x, aj〉aj =
1

λ
x

2. (a)⇒(c):

〈x, x〉 =

〈
λ
∑
j

〈x, aj〉aj, x

〉
= λ

∑
j

|〈x, aj〉|2

3. (c)⇒(a): Use polarization identity

〈x, y〉 =
1

4

[
‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2

]
we can obtain

〈x, y〉 = λ
∑
j

〈x, aj〉〈aj, y〉 =

〈
λ
∑
j

〈x, aj〉aj, y

〉
.
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Equiangular tight frame

Definition
A family of normalized vectors {a1, ..., aN} is called

equiangular if

|〈ai, aj〉| = c for all i 6= j.

Examples

I In R2, let a1 = e1, a2 = (−1,
√

3)/2, a3 = (−1,−
√

3)/2

form an ETF.

I The windowed Fourier basis (Garbor) forms an ETF.

I Splines

I Wavelets, Framelets
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Matrices with small coherence

Theorem
• Let A be m×N matrix with normalized column vectors.

Then

µ1(s) ≥ s

√
N −m
m(N − 1)

whenever s <
√
N − 1.

The equality holds ⇔ {a1, ..., aN} are equiangular tight frame.

• For equiangular system {a1, ..., aN} in Cm, it holds

N ≤ m2.

The equality holds ⇔ {a1, ..., aN} is also a tight frame.
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Minimal number of measurements

For the matrices with smallest coherence: then

I N = m2

I µ1(s) = s
√

N−m
m(N−1)

∼ s c√
m

I The condition µ1(s) + µ1(s− 1) < 1 gives

(2s− 1)
c√
m
< 1

I This requires m ≥ Cs2.

I We will see later that exact recovery can be obtained for

m ≥ Cδ−2s ln(eNs)

with δs ≤ δ, where δs is another “coherence”

measurement, called restrict isometry property.
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