Basis Pursuit

I-Liang Chern

October 6, 2016

Basis Pursuit

- Given a vector \mathbf{y} which is obtained from a sparse vector \mathbf{x} through $\mathbf{y}=\mathbf{A x}$. The original sparse recovery problem is to recover x by solving

$$
\text { (P0) } \min _{\mathbf{z}}\|\mathbf{z}\|_{1} \text { subject to } \mathbf{A z}=\mathbf{y}
$$

- The basis pursuit is to solve

$$
\text { (P1) } \min _{\mathbf{z}}\|\mathbf{z}\|_{1} \text { subject to } \mathbf{A z}=\mathbf{y}
$$

- Goal: To find equivalent condition on \mathbf{A} so that solving (P1) is equivalent to solving (P0). ${ }^{1}$
${ }^{1}$ This is a note from S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing, Springer 2013.

Outline

- Null space property: recovery condition characterized by null space of A
- Stability
- Robustness

Recovery condition in terms of $N(\mathbf{A})$

Definition

1. A matrix $\mathbf{A} \in \mathbb{C}^{m \times N}$ is said to satisfy the null space property relative to $S \subset[N]$ if

$$
\left\|\mathbf{v}_{S}\right\|_{1}<\left\|\mathbf{v}_{\bar{S}}\right\|_{1} \text { for all } \mathbf{v} \in N(\mathbf{A}) \backslash\{0\} .
$$

2. It is said to satisfy the null space property of order s if it satisfies the null space property relative to S for all $S \subset[N]$ with $|S| \leq s$.

Example

1. $N=2, m=1, S=\{2\}$.

$$
\mathbf{A}=(-1,2), \quad-x_{1}+2 x_{2}=2
$$

$$
N(\mathbf{A})=<\mathbf{v}>=<(2,1)>, \quad\left|v_{2}\right|<\left|v_{1}\right|
$$

2. $N=3, m=1$,

$$
\begin{gathered}
\mathbf{A}=\left(\begin{array}{ccc}
2 & 1 & 0 \\
2 & 0 & 1
\end{array}\right), \quad N(\mathbf{A})=<(-1,2,2)^{T}> \\
\left|v_{1}\right|<\left|v_{2}\right|+\left|v_{3}\right|, \quad\left|v_{2}\right|<\left|v_{1}\right|+\left|v_{3}\right|, \quad\left|v_{3}\right|<\left|v_{1}\right|+\left|v_{2}\right|
\end{gathered}
$$

Null space property \Leftrightarrow Exact recovery

Theorem

Given an $m \times N$ matrix A, every N-vector \mathbf{x} supported on S is the unique solution of (P1) with $\mathbf{y}=\mathbf{A x}$ if and only if \mathbf{A} satisfies the null space property relative to S.
Proof. NSP \Rightarrow ExRy

1. Let \mathbf{z} satisfy $\mathbf{A z}=\mathbf{A x}$. We want to show $\|\mathbf{x}\|_{1}<\|\mathbf{z}\|_{1}$ if A satisfies NSP w.r.t. $S:=\operatorname{supp}(x)$.
2. Let $\mathbf{v}:=\mathbf{x}-\mathbf{z}$. Then

$$
\begin{aligned}
\|\mathbf{x}\|_{1} & \leq\left\|\mathbf{x}-\mathbf{z}_{S}\right\|_{1}+\left\|\mathbf{z}_{S}\right\|_{1}=\left\|\mathbf{v}_{S}\right\|+\left\|\mathbf{z}_{S}\right\|_{1} \\
& <\left\|\mathbf{v}_{\bar{S}}\right\|_{1}+\left\|\mathbf{z}_{S}\right\|_{1}=\left\|\mathbf{z}_{\bar{S}}\right\|_{1}+\left\|\mathbf{z}_{S}\right\|_{1}=\|\mathbf{z}\|_{1}
\end{aligned}
$$

3 Uniqueness is followed by the strict inequality $\|\mathbf{x}\|<\|\mathbf{z}\|_{1}$ for all $\mathbf{A z}=\mathbf{A x}$ and $\mathbf{z} \neq \mathbf{x}$.

Proof: ExRy \Rightarrow NSP

1. For any $\mathbf{v} \in N(\mathbf{A})-\{0\}, \mathbf{v}_{S}$ is the unique solution solving (P1) with $\mathbf{A z}=\mathbf{A v}_{S}$.
2. But we have $\mathbf{A}\left(-\mathbf{v}_{\bar{S}}\right)=\mathbf{A} \mathbf{v}_{S}$. From ExRy, we get

$$
\left\|\mathbf{v}_{S}\right\|_{1}<\left\|\mathbf{v}_{\bar{S}}\right\|_{1}
$$

Stability

- The data vector may not be sparse, it may have defect, or it may just be compressible.
- Compressibility of \mathbf{x} is measured by $\sigma_{s}(\mathbf{x})_{1}:=\left\|\mathbf{x}-\mathbf{x}_{s}^{*}\right\|_{1}$, where \mathbf{x}_{s}^{*} contains the largest s component (in magnitude) of \mathbf{x}.

Definition

A matrix A satisfied the stable null space property with constant $0<\rho<1$ relative to $S \subset[N]$ if

$$
\begin{equation*}
\left\|\mathbf{v}_{S}\right\|_{1} \leq \rho\left\|\mathbf{v}_{\bar{S}}\right\|_{1} \text { for all } \mathbf{v} \in N(\mathbf{A}) \tag{0.1}
\end{equation*}
$$

Stable CS

Theorem (Stable CS)

Suppose A satisfies the stable null space property of order s. Then given any vector x , a soultion $\mathrm{x}^{\#}$ of (P1) with $\mathbf{y}=\mathbf{A x}$ satisfies

$$
\begin{equation*}
\left\|\mathrm{x}-\mathrm{x}^{\#}\right\|_{1} \leq \frac{2(1+\rho)}{1-\rho} \sigma_{s}(\mathrm{x})_{1} . \tag{0.2}
\end{equation*}
$$

Remarks.

- If \mathbf{x} is indeed s sparse, then $\mathbf{x}^{\#}=\mathbf{x}$.
- No uniqueness is required here.

Theorem
The matrix $\mathbf{A} \in \mathbb{C}^{m \times N}$ satisfies the stable null space property:
$\exists 0<\rho<1$ s.t.

$$
\left\|\mathbf{v}_{S}\right\|_{1} \leq \rho\left\|\mathbf{v}_{\bar{S}}\right\|_{1} \quad \forall \mathbf{v} \in N(\mathbf{A}) \backslash\{0\}
$$

if and only if

$$
\begin{equation*}
\|\mathbf{z}-\mathbf{x}\|_{1} \leq \frac{1+\rho}{1-\rho}\left(\|\mathbf{z}\|_{1}-\|\mathbf{x}\|_{1}+2\left\|\mathbf{x}_{\bar{S}}\right\|_{1}\right) \tag{0.3}
\end{equation*}
$$

for any z with $\mathbf{A z}=\mathbf{A x}$.
Proof of Stable CS Theorem.
In (0.3), take $\mathbf{z}=\mathbf{x}^{\#}$, then from $\mathbf{A} \mathbf{x}^{\#}=\mathbf{A x}$ and $\left\|\mathbf{x}^{\#}\right\|_{1} \leq\|\mathbf{x}\|_{1}$, (0.2) follows.

Proof of Theorem 0.5

$(0.3) \Rightarrow(0.1)$.

1. Given any $\mathbf{v} \in N(\mathbf{A}) \backslash\{0\}$, since $\mathbf{A v}_{\bar{S}}=\mathbf{A}\left(-\mathbf{v}_{S}\right)$, we apply (0.3) with $\mathbf{x}=-\mathbf{v}_{S}$ and $\mathbf{z}=\mathbf{v}_{\bar{S}}$. It yields

$$
\|\mathbf{v}\|_{1} \leq \frac{1+\rho}{1-\rho}\left(\left\|\mathbf{v}_{\bar{S}}\right\|_{1}-\left\|\mathbf{v}_{S}\right\|_{1}\right) .
$$

2. This is the same as

$$
(1-\rho)\left(\left\|\mathbf{v}_{S}\right\|+\left\|\mathbf{v}_{\bar{S}}\right\|_{1}\right) \leq(1+\rho)\left(\left\|\mathbf{v}_{\bar{S}}\right\|_{1}-\left\|\mathbf{v}_{S}\right\|_{1}\right)
$$

which gives

$$
\left\|\mathbf{v}_{S}\right\|_{1} \leq \rho\left\|\mathbf{v}_{\bar{S}}\right\|_{1} .
$$

$(0.1) \Rightarrow(0.3)$.

1. Suppose \mathbf{z} satisfies $\mathbf{A z}=\mathbf{A x}$. Let $\mathbf{v}:=\mathbf{z}-\mathbf{x}$.
2. From (0.1)

$$
\|\mathbf{v}\|_{1}=\left\|\mathbf{v}_{S}\right\|_{1}+\left\|\mathbf{v}_{\bar{S}}\right\|_{1} \leq(1+\rho)\left\|\mathbf{v}_{\bar{S}}\right\|_{1} .
$$

3. We claim

$$
\left\|\mathbf{v}_{\bar{S}}\right\|_{1} \leq\|\mathbf{z}\|_{1}-\|\mathbf{x}\|_{1}+\left\|\mathbf{v}_{S}\right\|_{1}+2\left\|\mathbf{x}_{\bar{S}}\right\|_{1}
$$

4. With this, use (0.1) again,

$$
\begin{gathered}
\left\|\mathbf{v}_{\bar{S}}\right\|_{1} \leq\|\mathbf{z}\|_{1}-\|\mathbf{x}\|_{1}+\rho\left\|\mathbf{v}_{\bar{S}}\right\|_{1}+2\left\|\mathbf{x}_{\bar{S}}\right\|_{1} \\
\left\|\mathbf{v}_{\bar{S}}\right\|_{1} \leq \frac{1}{1-\rho}\left(\|\mathbf{z}\|_{1}-\|\mathbf{x}\|_{1}+2\left\|\mathbf{x}_{\bar{S}}\right\|_{1}\right)
\end{gathered}
$$

5. (0.1) follows from 2 and 4.

Proof of claim:
1.

$$
\begin{gathered}
\|\mathbf{x}\|_{1}=\left\|\mathbf{x}_{\bar{S}}\right\|_{1}+\left\|\mathbf{x}_{S}\right\|_{1} \leq\left\|\mathbf{x}_{\bar{S}}\right\|_{1}+\left\|(\mathbf{x}-\mathbf{z})_{S}\right\|_{1}+\left\|\mathbf{z}_{S}\right\|_{1} \\
\left\|(\mathbf{x}-\mathbf{z})_{\bar{S}}\right\|_{1} \leq\left\|\mathbf{x}_{\bar{S}}\right\|_{1}+\left\|\mathbf{z}_{\bar{S}}\right\|_{1}
\end{gathered}
$$

2. Adding these two gives the claim

$$
\left\|(\mathbf{x}-\mathbf{z})_{\bar{S}}\right\|_{1} \leq\|\mathbf{z}\|_{1}-\|\mathbf{x}\|_{1}+\left\|(\mathbf{x}-\mathbf{z})_{S}\right\|_{1}+2\left\|\mathbf{x}_{\bar{S}}\right\|_{1}
$$

Robustness

- Consider the case when there is measurement error:

$$
\|\mathbf{y}-\mathbf{A} \mathbf{x}\| \leq \eta
$$

- We therefore consider thew minimization problem

$$
\left(P_{1 \eta}\right) \quad \min \|\mathbf{z}\|_{1} \text { subject to }\|\mathbf{A} \mathbf{z}-\mathbf{y}\| \leq \eta
$$

Definition

A is said to satisfy the robust null space property with ρ and τ w.r.t. $S \subset[N]$ if

$$
\left\|\mathbf{v}_{S}\right\|_{1} \leq \rho\left\|\mathbf{v}_{\bar{S}}\right\|_{1}+\tau\|\mathbf{A} \mathbf{v}\| \quad \forall \mathbf{v} \in \mathbb{C}^{N}
$$

Robustness CS

Theorem
Suppose A satisfies robustness NSP for all S with $|S| \leq s$. Then for any \mathbf{x}, if $\mathbf{x}^{\#}$ is a solution of ($P_{1 \eta}$) with $\mathbf{y}=\mathbf{A} \mathbf{x}+\mathbf{e}$ and $\|\mathbf{e}\| \leq \eta$, then

$$
\begin{equation*}
\left\|\mathbf{x}^{\#}-\mathbf{x}\right\|_{1} \leq \frac{2(1+\rho)}{1-\rho} \sigma_{s}(\mathbf{x})_{1}+\frac{4 \tau}{1-\rho} \eta . \tag{0.4}
\end{equation*}
$$

Theorem

The matrix A satisfies robustness NSP w.r.t S

$$
\begin{equation*}
\left\|\mathbf{v}_{S}\right\|_{1} \leq \rho\left\|\mathbf{v}_{\bar{S}}\right\|_{1}+\tau\|\mathbf{A} \mathbf{v}\| \quad \forall \mathbf{v} \in \mathbb{C}^{N} . \tag{0.5}
\end{equation*}
$$

if and only if
$\|\mathbf{z}-\mathbf{x}\|_{1} \leq \frac{1+\rho}{1-\rho}\left(\|\mathbf{z}\|_{1}-\|\mathbf{x}\|_{1}+2\left\|\mathbf{x}_{\bar{S}}\right\|_{1}\right)+\frac{2 \tau}{1-\rho}\|\mathbf{A}(\mathbf{z}-\mathbf{x})\|$
(0.6)
for any vectors $\mathbf{x}, \mathbf{z} \in \mathbb{C}^{N}$.

1. $(0.6) \Rightarrow(0.5)$: For any $\mathbf{v} \in \mathbb{C}^{N}$, taking $\mathbf{x}=-\mathbf{v}_{S}, \mathbf{z}=\mathbf{v}_{\bar{S}}$,

$$
\|\mathbf{v}\|_{1} \leq \frac{1+\rho}{1-\rho}\left(\left\|\mathbf{v}_{\bar{S}}\right\|_{1}-\left\|\mathbf{v}_{S}\right\|_{1}\right)+\frac{2 \tau}{1-\rho}\|\mathbf{A} \mathbf{v}\|
$$

Rearranging this get (0.5).
2. $(0.5) \Rightarrow(0.6):$ Taking $\mathbf{v}=\mathbf{z}-\mathbf{x}$,

$$
\begin{aligned}
\|\mathbf{v}\|_{1} & =\left\|\mathbf{v}_{S}\right\|_{1}+\left\|\mathbf{v}_{\bar{S}}\right\|_{1} \leq(1+\rho)\left\|\mathbf{v}_{\bar{S}}\right\|_{1}+\tau\|\mathbf{A} \mathbf{v}\| \\
\left\|\mathbf{v}_{\bar{S}}\right\|_{1} & \leq\|\mathbf{z}\|_{1}-\|\mathbf{x}\|_{1}+\left\|\mathbf{v}_{S}\right\|_{1}+2\left\|\mathbf{x}_{\bar{S}}\right\|_{1} \\
& \leq\|\mathbf{z}\|_{1}-\|\mathbf{x}\|_{1}+\rho\left\|\mathbf{v}_{\bar{S}}\right\|_{1}+\tau\|\mathbf{A} \mathbf{v}\|+2\left\|\mathbf{x}_{\bar{S}}\right\|_{1}
\end{aligned}
$$

Combine these two, we get (0.6).

Robust recovery in ℓ_{2}

Definition

A is said to satisfy the ℓ_{2}-robust null space property with $0<\rho<1$ and τ w.r.t. $S \subset[N]$ if

$$
\left\|\mathbf{v}_{S}\right\|_{2} \leq \frac{\rho}{\sqrt{s}}\left\|\mathbf{v}_{\bar{S}}\right\|_{1}+\tau\|\mathbf{A} \mathbf{v}\|_{2} \quad \forall \mathbf{v} \in \mathbb{C}^{N} .
$$

Remark. Please compare this with the robust NSP defined earlier:

$$
\left\|\mathbf{v}_{S}\right\|_{1} \leq \rho\left\|\mathbf{v}_{\bar{S}}\right\|_{1}+\tau\|\mathbf{A} \mathbf{v}\|_{2} \quad \forall \mathbf{v} \in \mathbb{C}^{N} .
$$

Also, we have Hölder inequality $\left\|\mathbf{v}_{S}\right\|_{1} \leq \sqrt{s}\left\|\mathbf{v}_{S}\right\|_{2}$.

Theorem
Suppose A satisfies ℓ_{2}-robust NSP with $0<\rho<1$ and τ for all S with $|S| \leq s$. Then for any \mathbf{x}, if $\mathbf{x}^{\#}$ is a solution of $\left(P_{1 \eta}\right)$ with $\mathbf{y}=\mathbf{A x}+\mathbf{e}$ and $\|\mathbf{e}\| \leq \eta$, then

$$
\begin{align*}
& \left\|\mathrm{x}^{\#}-\mathrm{x}\right\|_{1} \leq C \sigma_{s}(\mathbf{x})_{1}+D \sqrt{s} \eta . \tag{0.7}\\
& \left\|\mathrm{x}^{\#}-\mathrm{x}\right\|_{2} \leq \frac{C}{\sqrt{s}} \sigma_{s}(\mathrm{x})_{1}+D \eta . \tag{0.8}
\end{align*}
$$

where C, D depend on ρ and τ.

Theorem

The matrix A satisfies ℓ_{2}-robust NSP w.r.t S

$$
\begin{equation*}
\left\|\mathbf{v}_{S}\right\|_{2} \leq \frac{\rho}{\sqrt{s}}\left\|\mathbf{v}_{\bar{S}}\right\|_{1}+\tau\|\mathbf{A} \mathbf{v}\|_{2} \quad \forall \mathbf{v} \in \mathbb{C}^{N} . \tag{0.9}
\end{equation*}
$$

then for $1 \leq p \leq 2$,

$$
\|\mathbf{z}-\mathbf{x}\|_{p} \leq \frac{C}{s^{1-1 / p}}\left(\|\mathbf{z}\|_{1}-\|\mathbf{x}\|_{1}+2\left\|\mathbf{x}_{\bar{S}}\right\|_{1}\right)+D s^{1 / p-1 / 2}\|\mathbf{A}(\mathbf{z}-\mathbf{x})\|_{2}
$$

where

$$
C=\frac{(1+\rho)^{2}}{1-\rho}, \quad D=\frac{(3+\rho) \tau}{1-\rho}
$$

Proof.

1. By Hölder inequality

$$
\left\|\mathbf{v}_{S}\right\|_{p} \leq s^{1 / p-1 / q}\left\|\mathbf{v}_{S}\right\|_{q}
$$

In particular, $q=2$, together with ℓ_{2}-robust NSP, we get

$$
\left\|\mathbf{v}_{S}\right\|_{p} \leq s^{1 / p-1 / 2}\left\|\mathbf{v}_{S}\right\|_{2} \leq s^{1 / p-1} \rho\left\|\mathbf{v}_{\bar{S}}\right\|_{1}+s^{1 / p-1 / 2} \tau\|\mathbf{A} \mathbf{v}\|_{2}
$$

2. With $p=1$, apply (0.6), we get

$$
\|\mathbf{z}-\mathbf{x}\|_{1} \leq \frac{1+\rho}{1-\rho}\left(\|\mathbf{z}\|_{1}-\|\mathbf{x}\|_{1}+2\left\|\mathbf{x}_{\bar{S}}\right\|_{1}\right)+\frac{2 \tau}{1-\rho} s^{1 / 2}\|\mathbf{A}(\mathbf{z}-\mathbf{x})\|
$$

3. Take S the index set of s largest entries of $\mathbf{v}=\mathbf{z}-\mathbf{x}$,

$$
\begin{aligned}
&\|\mathbf{z}-\mathbf{x}\|_{p} \leq\left\|(\mathbf{z}-\mathbf{x})_{\bar{S}}\right\|_{p}+\left\|(\mathbf{z}-\mathbf{x})_{S}\right\|_{p} \leq \frac{1}{s^{1-1 / p}}\|\mathbf{z}-\mathbf{x}\|_{1}+\left\|(\mathbf{z}-\mathbf{x})_{S}\right\|_{p} \\
& \leq \frac{1}{s^{1-1 / p}}\|\mathbf{z}-\mathbf{x}\|_{1}+s^{1 / p-1} \rho\left\|(\mathbf{z}-\mathbf{x})_{\bar{S}}\right\|_{1}+s^{1 / p-1 / 2} \tau\|\mathbf{A}(\mathbf{z}-\mathbf{x})\|_{2} \\
& \leq \frac{1+\rho}{s^{1-1 / p}}\|\mathbf{z}-\mathbf{x}\|_{1}+s^{1 / p-1 / 2} \tau\|\mathbf{A}(\mathbf{z}-\mathbf{x})\|_{2} \\
& \quad \text { Recall } \sigma_{s}(\mathbf{x})_{q} \leq \frac{c_{p, q}}{s^{1 / p-1 / q}}\|\mathbf{x}\|_{p}
\end{aligned}
$$

