Sparse solutions of underdetermined

systems

I-Liang Chern

September 22, 2016

Outline

- Sparsity and Compressibility: the concept for measuring sparsity and compressibility of data
- Minimum measurements to recover sparse data: Find a measurement \mathbf{A} so that $\mathbf{A x}=\mathbf{y}$ is solvable
- For general sparse data
- For a specific sparse data \mathbf{x}

This is a note from S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing, Springer 2013.

Sparsity

- Notations:
- $[N]:=\{1, \ldots, N\}, \bar{S}:=[N] \backslash S$;
- A vector $\mathrm{x} \in \mathbb{C}^{N}$, its support is

$$
\operatorname{Supp}(\mathbf{x}):=\left\{j \mid x_{j} \neq 0\right\} .
$$

- For $S \subset[N], \mathbf{x} \in \mathbb{C}^{N}, \mathbf{x}_{S}$ is defined by

$$
x_{S, i}= \begin{cases}x_{i} & \text { if } i \in S \\ 0 & \text { otherwise }\end{cases}
$$

- s-sparse vectors $\Sigma_{s}=\left\{\mathbf{x} \in \mathbb{C}^{N}, \mathbf{x}\right.$ is s-sparse. $\}$
- Definitions:

$$
\begin{aligned}
& \|\mathbf{x}\|_{0}:=\# \operatorname{Supp}(\mathbf{x}) ; \\
& \|\mathbf{x}\|_{p}:=\left(\sum_{j=1}^{N}\left|x_{j}\right|^{p}\right)^{1 / p}, 0<p<\infty ;\|\mathbf{x}\|^{p} \rightarrow\|\mathbf{x}\|_{0} \text { as } \\
& p \rightarrow 0 .
\end{aligned}
$$

Sparsity

- Non increasing rearrangement of x is defined by

$$
x_{1}^{*} \geq x_{2}^{*} \geq \cdots \geq x_{N}^{*} \geq 0
$$

where $x_{j}^{*}=\left|x_{\pi(j)}\right|$ and π is a permutation on $[N]$.

- Given \mathbf{x}, we can find its s-sparse projection \mathbf{x}_{s}^{*}, the part of component of \mathbf{x} which contains s largest absolute values of \mathbf{x}. Such x_{s}^{*} may not be unique.
- A vector \mathbf{x} is s-sparse if $\mathbf{x}=\mathbf{x}_{s}^{*}$
- Best s-term approximation: An \mathbf{x}_{s}^{*} of \mathbf{x}.

Compressibility

- Best s-term approximation error in p-norm $(p \geq 1)$

$$
\sigma_{s}(\mathbf{x})_{p}:=\inf \left\{\|\mathbf{x}-\mathbf{z}\|_{p} \mid \mathbf{z} \in \Sigma_{s}\right\}
$$

- A vector is called compressible if $\sigma_{s}(\mathbf{x})_{p}$ decays fast in s. (e.g. $\sigma_{s}(\mathbf{x})_{p}=O\left(s^{-r}\right)$ for some $p \geq 1$ and some $r>1$.)
- Many data are compressible. The following theorem says that $\sigma_{s}(\mathbf{x})_{q}$ can be controlled by $\|\mathbf{x}\|_{p}$ with $0<p<q$.

Compressibility of a vector

Theorem
The following inequality holds

$$
\sigma_{s}(\mathbf{x})_{q} \leq \frac{c_{p, q}}{s^{1 / p-1 / q}}\|\mathbf{x}\|_{p}
$$

where $0<p<q$ and

$$
c_{p, q}:=\left[\left(\frac{p}{q}\right)^{p / q}\left(1-\frac{p}{q}\right)^{1-p / q}\right]^{1 / p} \leq 1
$$

Remarks

1. For $q=2, p \leq 1$, we have

$$
\sigma_{s}(\mathbf{x})_{2} \leq \frac{1}{s^{1 / p-1 / 2}}\|\mathbf{x}\|_{p}
$$

This suggests that the unit ball in ℓ_{p} quasi-norm for $p \leq 1$ are good models for compressible vectors.
2. In particular, $p=1$,

$$
\sigma_{s}(\mathbf{x})_{2} \leq \frac{1}{2 \sqrt{s}}\|\mathbf{x}\|_{1}
$$

The vectors with $\|\mathbf{x}\|_{1} \leq 1$ can also serve as compressible vectors.

Proof.

1. Set $\alpha_{j}=\left(x_{j}^{*}\right)^{p} /\|\mathbf{x}\|_{p}^{p}$, where \mathbf{x}^{*} is a non-increasing rearrangement of \mathbf{x}, then the theorem is equivalent to:

$$
\left(\alpha_{1} \geq \cdots \geq \alpha_{N}, \quad \alpha_{1}+\cdots+\alpha_{N} \leq 1\right)
$$

implies

$$
\alpha_{s+1}^{q / p}+\cdots+\alpha_{N}^{q / p} \leq \frac{c_{p, q}^{q}}{s^{q / p-1}} .
$$

This is a constrained optimization problem: let $r=q / p>1$, we want to maximize

$$
f\left(\alpha_{1}, \ldots, \alpha_{N}\right):=\alpha_{s+1}^{r}+\cdots+\alpha_{N}^{r}
$$

over a convex polygon
$\mathcal{C}:=\left\{\left(\alpha_{1}, \ldots, \alpha_{N}\right) \mid \alpha_{1} \geq \ldots \geq \alpha_{N} \geq 0, \alpha_{1}+\cdots+\alpha_{N} \leq 1\right\}$

2 The maximum occurs at corners.

- If $\alpha_{1}=\cdots=\alpha_{N}=0$, then $f(\alpha)=0$.
- If $\alpha_{1}+\cdots+\alpha_{N}=1$,

$$
\alpha_{1}=\cdots=\alpha_{k}>\alpha_{k+1}=\cdots=\alpha_{N}=0,1 \leq k \leq s, \text { then }
$$

$$
f(\alpha)=0
$$

- If $\alpha_{1}+\cdots+\alpha_{N}=1$,

$$
\begin{aligned}
& \alpha_{1}=\cdots=\alpha_{k}>\alpha_{k+1}=\cdots=\alpha_{N}=0, s+1 \leq k \leq N, \\
& \text { then } \alpha_{i}=1 / k \text { for } 1 \leq i \leq k \text { and } f(\alpha)=(k-s) / k^{r} .
\end{aligned}
$$

It follows that

$$
\max _{\alpha \in \mathcal{C}} f(\alpha)=\max _{s+1 \leq k \leq N} \frac{k-s}{k^{r}}
$$

3 Taking k as a continuous variable, we obtain maximum at $k^{*}=(r /(r-1)) s$. Hence

$$
\max _{\alpha \in \mathcal{C}} f(\alpha) \leq \frac{1}{r}\left(1-\frac{1}{r}\right)^{r-1} \frac{1}{s^{r-1}}=c_{p, q}^{q} \frac{1}{s^{q / p-1}}
$$

Minimal Measurements for Reconstructing Sparse

Vectors

- Linear measurement: $\mathbf{y}=A \mathbf{x} . A$ is $m \times N$.
- Question: minimal number of linear measurements needed to reconstruct s-sparse vectors from these measurements, regardless of the practicality of the reconstruction scheme.
- Two meanings:
- Reconstruction of all s-sparse vectors
- Given a specific s-sparse \mathbf{x}, construct a measurement A such that it can recover x exactly.
- Minimal measurements:
- For the first, $m=2 s$.
- For the second, $m=s+1$.

Remarks

- The meaning for the second is in the measure sense, which means that the Lebesgue measure of the set of matrices which cannot recover a given specific s-sparse vector \mathbf{x} is zero.
- For the recovery of all vectors, however, the reconstruction may not be stable, in the sense that a small perturbation of \mathbf{y} causes large change of \mathbf{x}. If we add the stability requirement, then the minimal measurements become

$$
m \geq C s \ln (N / s)
$$

where C depends on the stability criterion.

Recover all s-sparse vectors

Theorem

Given $A \in \mathbb{C}^{m \times N}$, the following properties are equivalent:
(a) Every s-sparse vector $x \in \mathbb{C}^{N}$ is the unique s-sparse solution of $A z=A x$, that is, if $A x=A z$ and $x, z \in \Sigma_{s}$, then $x=z$.
(b) The null space $k e r A$ does not contain any $2 s$-sparse vector other than the zero vector, that is, $\operatorname{ker} A \cap \Sigma_{2 s}=\{0\}$.
(c) For every $S \subset[N]$ with $|S| \leq 2 s$, the submatrix A_{S} is injective as a map from \mathbb{C}^{S} to \mathbb{C}^{m}.
(d) Every set of $2 s$ columns of A is linearly independent.

Proof

1. $(\mathrm{b}) \Rightarrow(\mathrm{a})$: If $A z=A x$, then $z-x \in \operatorname{ker} A$. Since both z and x are s-sparse, we get $z-x$ is $2 s$-sparse. From (b), $z-x=0$.
2. $(\mathrm{a}) \Rightarrow(\mathrm{b}):$ For any $\mathbf{v} \in \operatorname{ker} A \cap \Sigma_{2 s}$, we can split $\mathbf{v}=\mathbf{z}-\mathbf{x}$ such that $\operatorname{supp} \mathbf{z} \cap \operatorname{supp} \mathbf{x}=\emptyset$ and both \mathbf{x} and \mathbf{z} are s-sparse. By (a), $\mathbf{z}=\mathbf{x}$. Thus, $\mathbf{v}=0$.
3. $(\mathrm{b}) \Leftrightarrow(\mathrm{c}) \Leftrightarrow(\mathrm{d})$: For any $S \subset[N]$, noting that $A \mathbf{v}=A_{S} \mathbf{v}_{S}$. Use
$|S|=\operatorname{dim} \operatorname{Dom}\left(A_{S}\right)=\operatorname{dim} k e r A_{S}+\operatorname{dim} \operatorname{Ran} A_{S}$, we get that $\operatorname{ker} A=\{0\}$ if and only if $\operatorname{dim} \operatorname{Ran} A_{S}=|S|$.

Recover all s-sparse vectors

- We look for a measurement matrix with $2 s \times N$ which can recover all s-sparse vectors.
- Answer 1: Given any $0<t_{1}<\cdots<t_{N}$, define

$$
A=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
t_{1} & t_{2} & \cdots & t_{N} \\
t_{1}^{2} & t_{2}^{2} & \cdots & t_{N}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
t_{1}^{2 s-1} & t_{2}^{2 s-1} & \cdots & t_{N}^{2 s-1}
\end{array}\right)
$$

Let $S \subset[N]$ with $\operatorname{card}(S)=2 s$. Any column sub matrix A_{S} is a Vandermonde matrix, which is invertible.

Recover all s-sparse vectors

- Answer 2: Fourier sub matrix, we choose $\omega_{j}=e^{2 \pi i(j-1) / N}$

$$
A=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\omega_{1} & \omega_{2} & \cdots & \omega_{N} \\
\omega_{1}^{2} & \omega_{2}^{2} & \cdots & \omega_{N}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
\omega_{1}^{2 s-1} & \omega_{2}^{2 s-1} & \cdots & \omega_{N}^{2 s-1}
\end{array}\right)
$$

Recover a specific s-sparse vector

- Given an s-sparse vector, find an $(s+1) \times N$ matrix A so that the measurement $\mathbf{y}=A \mathbf{x}$ can recover \mathbf{x} exactly via (P0).
- Answer: The set of all $(s+1) \times N$ matrices which cannot do so has measure zero.

