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Outline

» Sparsity and Compressibility: the concept for measuring
sparsity and compressibility of data

» Minimum measurements to recover sparse data: Find a
measurement A so that Ax =y is solvable

» For general sparse data

» For a specific sparse data x

This is a note from S. Foucart and H. Rauhut, A Mathematical Introduction to
Compressive Sensing, Springer 2013.
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Sparsity

» Notations:
» [N]:={1,..,N}, S:=[N]\S;
» A vector x € CV, its support is
Supp (x) :={j[z; # 0}.
» For SC[N], x € CV, xg is defined by

xS = .
0 otherwise.

» s-sparse vectors ¥, = {x € CV,x is s-sparse.}
» Definitions:
> |Ixl[o := # Supp (x);
el = (S bayl?) 0 < p < ool > el a5
p — 0.
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Sparsity

>

v

v

v

Non increasing rearrangement of x is defined by
> ry > 22y >0

where x% = |z,(;| and 7 is a permutation on [N].

Given x, we can find its s-sparse projection x, the part
of component of x which contains s largest absolute

values of x. Such x* may not be unique.
A vector x is s-sparse if x = x

Best s-term approximation: An x! of x.
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Compressibility

» Best s-term approximation error in p-norm (p > 1)
73(x)y = inf{|[x — ], 7 € 5.}

» A vector is called compressible if o4(x), decays fast in s.
(e.g. 05(x), = O(s™") for some p > 1 and some r > 1.)

» Many data are compressible. The following theorem says

that o4(x), can be controlled by ||x||, with 0 < p < q.
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Compressibility of a vector

Theorem
The following inequality holds

C
05(x)g < 1/5(]1/(]“ X ||,

where 0 < p < q and
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Remarks

1. Forg=2, p <1, we have
1

0s(x)2 < m”xﬂp'
This suggests that the unit ball in ¢, quasi-norm for

p < 1 are good models for compressible vectors.

2. In particular, p =1,

The vectors with ||x||; < 1 can also serve as compressible

vectors.
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[
Proof.

1. Set aj = (z})?/|x||h, where x* is a non-increasing

rearrangement of x, then the theorem is equivalent to:
(@1 >--->an, a1+ ---+ay<1)

implies
q/p RS aq/p Cg,q

Qs — ga/p—1°

This is a constrained optimization problem: let

r=q/p > 1, we want to maximize
f(aly ey OéN) = a2+1 + o4 O{}NV
over a convex polygon

C:={(ay,..,an)|la1 > ...>ay >0,a0+ - +ay < 1}
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2 The maximum occurs at corners.

» Ifa;=---=an =0, then f(a) =0.

»lfag+- - 4+ay=1,
ap=-=0ap>ap; =-=ay=0,1<k <s, then
f(a) =0.

»lfar+---+ay =1,
ap=-=aqp>a1=-=ay=0,s+1<k<N,

then a; = 1/k for 1 <i <k and f(a) = (k—s)/k".
It follows that

f(@) i
max f(a) = max
= st1<k<N k"

3 Taking k as a continuous variable, we obtain maximum at
kE* = (r/(r —1))s. Hence

1 N1 1
Z _ = — 4
Igggif(a) = r (1 r) g1 Cp’qsq/p*1
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Minimal Measurements for Reconstructing Sparse

Vectors

Linear measurement: y = Ax. Aism x N.

v

Question: minimal number of linear measurements needed

v

to reconstruct s-sparse vectors from these measurements,
regardless of the practicality of the reconstruction scheme.
» Two meanings:
» Reconstruction of all s-sparse vectors
» Given a specific s-sparse x, construct a measurement A
such that it can recover x exactly.
Minimal measurements:

v

» For the first, m = 2s.

» For the second, m = s + 1. 10/16



Remarks

» The meaning for the second is in the measure sense,
which means that the Lebesgue measure of the set of
matrices which cannot recover a given specific s-sparse
vector X is zero.

» For the recovery of all vectors, however, the
reconstruction may not be stable, in the sense that a
small perturbation of y causes large change of x. If we
add the stability requirement, then the minimal

measurements become
m > Csln(N/s),

where C' depends on the stability criterion.
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Recover all s-sparse vectors

Theorem

Given A € C™N | the following properties are equivalent:

(a) Every s-sparse vector x € CN is the unique s-sparse
solution of Az = Ax, that is, if Avr = Az and x, z € ¥,
then x = z.

(b) The null space ker A does not contain any 2s-sparse
vector other than the zero vector,that is,
ker AN Yy, = {0}.

(c) For every S C [N] with |S| < 2s, the submatrix Ag is
injective as a map from C° to C™.

(d) Every set of 2s columns of A is linearly independent.
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Proof

1. (b)= (a): If Az = Ax, then z — x € kerA. Since both z
and x are s-sparse, we get z — x is 2s-sparse. From (b),
z—x=0.

2. (a) = (b): For any v € kerA N Xa,, we can split
v = z — x such that suppz N suppx = ) and both x and
z are s-sparse. By (a), z = x. Thus, v =0.

3. (b)<(c)<(d): For any S C [N], noting that
Av = Agvg. Use
|S| = dim Dom(Ag) = dim kerAg + dim RanAg, we
get that kerA = {0} if and only if dim RanAgs = |S].
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Recover all s-sparse vectors

» We look for a measurement matrix with 2s x N which

can recover all s-sparse vectors.

» Answer 1: Given any 0 < t; < --- < ty, define

tl t2 e tN
A= t2 2 1R
t%s—l t%s—l .. t?\}s—l

Let S C [N] with card(S) = 2s. Any column sub matrix
Ag is a Vandermonde matrix, which is invertible.
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Recover all s-sparse vectors

» Answer 2: Fourier sub matrix, we choose w; = ¢

2mi(j—1)/N

1 1
W2 WN
2 . o 2
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Recover a specific s-sparse vector

» Given an s-sparse vector, find an (s+ 1) x N matrix A so
that the measurement y = Ax can recover x exactly via
(PO).

» Answer: The set of all (s + 1) x N matrices which cannot

do so has measure zero.
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