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Outline

I Sparsity and Compressibility: the concept for measuring

sparsity and compressibility of data

I Minimum measurements to recover sparse data: Find a

measurement A so that Ax = y is solvable

I For general sparse data

I For a specific sparse data x

This is a note from S. Foucart and H. Rauhut, A Mathematical Introduction to

Compressive Sensing, Springer 2013.
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Sparsity

I Notations:
I [N ] := {1, ..., N}, S̄ := [N ]\S;

I A vector x ∈ CN , its support is

Supp (x) := {j |xj 6= 0}.
I For S ⊂ [N ], x ∈ CN , xS is defined by

xS,i =

{
xi if i ∈ S
0 otherwise.

I s-sparse vectors Σs = {x ∈ CN ,x is s-sparse.}
I Definitions:

I ‖x‖0 := # Supp (x);

I ‖x‖p :=
(∑N

j=1 |xj |p
)1/p

, 0 < p <∞; ‖x‖p → ‖x‖0 as

p→ 0.
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Sparsity

I Non increasing rearrangement of x is defined by

x∗1 ≥ x∗2 ≥ · · · ≥ x∗N ≥ 0

where x∗j = |xπ(j)| and π is a permutation on [N ].

I Given x, we can find its s-sparse projection x∗s, the part

of component of x which contains s largest absolute

values of x. Such x∗s may not be unique.

I A vector x is s-sparse if x = x∗s

I Best s-term approximation: An x∗s of x.

4 / 16



Compressibility

I Best s-term approximation error in p-norm (p ≥ 1)

σs(x)p := inf{‖x− z‖p| z ∈ Σs}

I A vector is called compressible if σs(x)p decays fast in s.

(e.g. σs(x)p = O(s−r) for some p ≥ 1 and some r > 1.)

I Many data are compressible. The following theorem says

that σs(x)q can be controlled by ‖x‖p with 0 < p < q.
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Compressibility of a vector

Theorem
The following inequality holds

σs(x)q ≤
cp,q

s1/p−1/q
‖x‖p,

where 0 < p < q and

cp,q :=

[(
p

q

)p/q (
1− p

q

)1−p/q
]1/p
≤ 1.
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Remarks

1. For q = 2, p ≤ 1, we have

σs(x)2 ≤
1

s1/p−1/2
‖x‖p.

This suggests that the unit ball in `p quasi-norm for

p ≤ 1 are good models for compressible vectors.

2. In particular, p = 1,

σs(x)2 ≤
1

2
√
s
‖x‖1.

The vectors with ‖x‖1 ≤ 1 can also serve as compressible

vectors.
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Proof.

1. Set αj = (x∗j)
p/‖x‖pp, where x∗ is a non-increasing

rearrangement of x, then the theorem is equivalent to:

(α1 ≥ · · · ≥ αN , α1 + · · ·+ αN ≤ 1)

implies

α
q/p
s+1 + · · ·+ α

q/p
N ≤

cqp,q
sq/p−1

.

This is a constrained optimization problem: let

r = q/p > 1, we want to maximize

f(α1, ..., αN) := αrs+1 + · · ·+ αrN

over a convex polygon

C := {(α1, ..., αN)|α1 ≥ ... ≥ αN ≥ 0, α1 + · · ·+αN ≤ 1}
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2 The maximum occurs at corners.
I If α1 = · · · = αN = 0, then f(α) = 0.

I If α1 + · · ·+ αN = 1,

α1 = · · · = αk > αk+1 = · · · = αN = 0, 1 ≤ k ≤ s, then

f(α) = 0.

I If α1 + · · ·+ αN = 1,

α1 = · · · = αk > αk+1 = · · · = αN = 0, s+ 1 ≤ k ≤ N ,

then αi = 1/k for 1 ≤ i ≤ k and f(α) = (k − s)/kr.
It follows that

max
α∈C

f(α) = max
s+1≤k≤N

k − s
kr

3 Taking k as a continuous variable, we obtain maximum at

k∗ = (r/(r − 1))s. Hence

max
α∈C

f(α) ≤ 1

r

(
1− 1

r

)r−1
1

sr−1
= cqp,q

1

sq/p−1
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Minimal Measurements for Reconstructing Sparse

Vectors

I Linear measurement: y = Ax. A is m×N .

I Question: minimal number of linear measurements needed

to reconstruct s-sparse vectors from these measurements,

regardless of the practicality of the reconstruction scheme.
I Two meanings:

I Reconstruction of all s-sparse vectors

I Given a specific s-sparse x, construct a measurement A

such that it can recover x exactly.

I Minimal measurements:
I For the first, m = 2s.

I For the second, m = s+ 1. 10 / 16



Remarks

I The meaning for the second is in the measure sense,

which means that the Lebesgue measure of the set of

matrices which cannot recover a given specific s-sparse

vector x is zero.

I For the recovery of all vectors, however, the

reconstruction may not be stable, in the sense that a

small perturbation of y causes large change of x. If we

add the stability requirement, then the minimal

measurements become

m ≥ Cs ln(N/s),

where C depends on the stability criterion.
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Recover all s-sparse vectors

Theorem
Given A ∈ Cm×N , the following properties are equivalent:

(a) Every s-sparse vector x ∈ CN is the unique s-sparse

solution of Az = Ax, that is, if Ax = Az and x, z ∈ Σs,

then x = z.

(b) The null space kerA does not contain any 2s-sparse

vector other than the zero vector,that is,

kerA ∩ Σ2s = {0}.
(c) For every S ⊂ [N ] with |S| ≤ 2s, the submatrix AS is

injective as a map from CS to Cm.

(d) Every set of 2s columns of A is linearly independent.
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Proof

1. (b)⇒ (a): If Az = Ax, then z − x ∈ kerA. Since both z

and x are s-sparse, we get z − x is 2s-sparse. From (b),

z − x = 0.

2. (a) ⇒ (b): For any v ∈ kerA ∩ Σ2s, we can split

v = z− x such that supp z ∩ suppx = ∅ and both x and

z are s-sparse. By (a), z = x. Thus, v = 0.

3. (b)⇔(c)⇔(d): For any S ⊂ [N ], noting that

Av = ASvS. Use

|S| = dimDom(AS) = dimkerAS + dimRanAS, we

get that kerA = {0} if and only if dimRanAS = |S|.
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Recover all s-sparse vectors

I We look for a measurement matrix with 2s×N which

can recover all s-sparse vectors.

I Answer 1: Given any 0 < t1 < · · · < tN , define

A =


1 1 · · · 1

t1 t2 · · · tN

t21 t22 · · · t2N
...

...
. . .

...

t2s−11 t2s−12 · · · t2s−1N


Let S ⊂ [N ] with card(S) = 2s. Any column sub matrix

AS is a Vandermonde matrix, which is invertible.
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Recover all s-sparse vectors

I Answer 2: Fourier sub matrix, we choose ωj = e2πi(j−1)/N

A =


1 1 · · · 1

ω1 ω2 · · · ωN

ω2
1 ω2

2 · · · ω2
N

...
...

. . .
...

ω2s−1
1 ω2s−1

2 · · · ω2s−1
N
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Recover a specific s-sparse vector

I Given an s-sparse vector, find an (s+ 1)×N matrix A so

that the measurement y = Ax can recover x exactly via

(P0).

I Answer: The set of all (s+ 1)×N matrices which cannot

do so has measure zero.
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